
Web-basierte Systeme – Übung
X2: WebAssembly outside the browser

Wintersemester 2023

Arne Vogel

Lehrstuhl für Verteilte Systeme 
und Betriebssysteme



Security & Portability

Implemented with security in mind!
Use WebAssembly outside the
browser?

2



System calls Background

Protective barriers to
system’s resources

Kernel mediates system
resource access
Each system has own system
calls

3



Abstraction

Interface to system resources
At compile time different
implementations are used
Problem solved?

WebAssembly bytecode is
platform independent
Where does the interface
implementation come from?

4



Abstraction

Interface to system resources
At compile time different
implementations are used

Problem solved?

WebAssembly bytecode is
platform independent
Where does the interface
implementation come from?

4



In the Browser

Emscripten emulates POSIX
on the web
JS glue code uses browser
APIs
Browser talks to kernel

5



Portability Before: Normal Programs

Compile for every system you
target
More work for every systems
Do we know all systems?
Systems that do not exist yet?

6



Portability After: WebAssembly System Interface

Only one compilation target
Compile against the
WebAssembly System
Interface (WASI)

Functions are left to be
imported

Runtime provides system
specific implementations

Imports are provided at
instantiation

7



Sandbox Before

Program has access to all
system calls
No limitation on arguments

8



Sandbox After

Limit system calls
e.g., only read and write
files

Limit arguments
e.g., only read files in
directory /config/wbs
e.g., only write files in
directory /tmp

Runtime itself can limit
capabilities to functions

9



Usecases

Two broad categories
Standalone applications

e.g., compile grep for
universal deployment

Libraries
Execute WebAssembly
inside of programs through
embedded runtime

10


