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Security & Portability

Implemented with security in mind!
Use WebAssembly outside the
browser?
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System calls Background

Protective barriers to
system’s resources

Kernel mediates system
resource access
Each system has own system
calls
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Abstraction

Interface to system resources
At compile time different
implementations are used
Problem solved?

WebAssembly bytecode is
platform independent
Where does the interface
implementation come from?
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In the Browser

Emscripten emulates POSIX
on the web
JS glue code uses browser
APIs
Browser talks to kernel
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Portability Before: Normal Programs

Compile for every system you
target
More work for every systems
Do we know all systems?
Systems that do not exist yet?
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Portability After: WebAssembly System Interface

Only one compilation target
Compile against the
WebAssembly System
Interface (WASI)

Functions are left to be
imported

Runtime provides system
specific implementations

Imports are provided at
instantiation
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Sandbox Before

Program has access to all
system calls
No limitation on arguments
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Sandbox After

Limit system calls
e.g., only read and write
files

Limit arguments
e.g., only read files in
directory /config/wbs
e.g., only write files in
directory /tmp

Runtime itself can limit
capabilities to functions
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Usecases

Two broad categories
Standalone applications

e.g., compile grep for
universal deployment

Libraries
Execute WebAssembly
inside of programs through
embedded runtime
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