
exec(2)
exec(2)

N
A

M
E

exec, execl, execv,execle, execve, execlp, execvp −
 execute a file

S
Y

N
O

P
S

IS#include <
unistd.h>

int execl(const char *p
a

th,const char *a
rg

0,
...,const char *a

rg
n,char *

/*N
U

LL
*/);

int execv(const char *p
a

th,char *consta
rg

v[]);

int execle(const char *p
a

th,char *consta
rg

0
[],

... , const char *a
rg

n,
char *

/*N
U

LL
*/,char *conste

nvp
[]);

int execve
(const char *p

a
th,char *consta

rg
v[]

char *conste
nvp

[]);

int execlp (const char *file,const char *a
rg

0,
...,const char *a

rg
n,char *

/*N
U

LL
*/);

int execvp (const char *file,char *consta
rg

v[]);

D
E

S
C

R
IP

T
IO

N
E

ach of the functions in theexecfam
ily overlays a new

process im
age on an old process.

T
he ne
w

process
im

age is constructed from
 an ordinary

,
executable file.

T
his file is either an e

xecutable object file, or a file
of data for an interpreter

.
T

here can be no return from
 a successful call to one of these functions because

the calling process im
age is o

verlaid by the new
process im

age.

W
hen a C

 program
 is executed, it is called as follow

s:

int m
ain (int argc, char∗argv[], char∗envp[]);

w
here

a
rg

c
is the argum

ent count,arg
v

is an array of character pointers to the argum
ents them

selves, and
e

nvp
is an array of character pointers to the environm

ent strings.
A

s indicated,
a

rg
c

is at least one, and the
first m

em
ber of the array points to a string containing the nam

e of the file.

T
he argum

entsa
rg

0,
...,a

rg
n

point to null-term
inated character strings.

T
hese strings constitute the ar

gu-
m

ent list available to the new
process im

age.C
onventionally at leasta

rg
0

should be present.The
a

rg
0

argum
ent points to a string that is the sam

e as
p

a
th

(or the last com
ponent ofpa

th).
T

he
list of argum

ent
strings is term

inated by a(char∗)0
argum

ent.

T
he

a
rg

v
argum

ent is an array of character pointers to null-term
inated strings.

T
hese strings constitute the

argum
ent list available to the new

process im
age.

B
y convention,a

rg
v

m
ust have atleast one m

em
ber
,and

it should point to a string that is the sam
e as
p

a
th

(or its last com
ponent).The

a
rg

v
argum

ent is term
inated

by a null pointer.

T
he

p
a

th
argum

ent points to a path nam
e that identifies the ne

w
process file.

T
he

file
argum

ent points to the newprocess file.If
file

does not contain a slash character
,the path prefix for

this file is obtained by a search of the directories passed in the
P

AT
H

environm
ent variable (seeenviron(5)).

F
ile descriptors open in the calling process rem

ain open in the ne
w

process.

S
ignals that are being caught by the calling process are set to the default disposition in the ne

w
process

im
age (seesignal(3C

)).
O

therw
ise,the new

process im
age inherits the signal dispositions of the calling

process.

R
E

T
U

R
N

 VA
LU

E
S

If a function in theexecfam
ily returns to the calling process, an error has occurred; the return value is

−
1

and
errno

is set to indicate the error.

S
P

-M
iniklausur M

anual-A
uszug

2013-10-24
1

stat(2)
stat(2)

N
A

M
E

stat, lstat −
 get file status

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/stat.h>

#include <
unistd.h>

int stat(const char *p
a

th,struct stat *
buf);

int lstat(const char *p
a

th,struct stat *
buf);

D
E

S
C

R
IP

T
IO

N
T

hese functions return inform
ation about the specified file.

You
do

not need any
access rights to the file to

get this inform
ation but you need search rights to all directories nam

ed in the path leading to the file.

statstats the file pointed to bypa
th

and fills in
buf.

lstatis identical tostat,except in the case of a sym
bolic link, w

here the link itself is stat-ed, not the file that
it refers to.

T
hey

all return asta
tstructure, w

hich contains the follow
ing fields:

struct stat {
dev_t

st_dev;
/*

device */
ino_t

st_ino;
/* inode */

m
ode_t

st_m
ode;

/* protection */
nlink_t

st_nlink;
/* num

ber of hard links */
uid_t

st_uid;
/* user ID

 of ow
ner */

gid_t
st_gid;

/* group ID
 of ow

ner */
dev_t

st_rdev;
/*

device type (if inode device) */
off_t

st_size;
/* total size, in bytes */

blksize_t
st_blksize;/* blocksize for filesystem

 I/O
 */

blkcnt_t
st_blocks;/* num

ber of blocks allocated */
tim

e_t
st_atim

e;
/* tim

e of last access */
tim

e_t
st_m

tim
e;

/* tim
e of last m

odification */
tim

e_t
st_ctim

e;
/* tim

e of last status change */
};

T
he value

st_
sizegives

the size of the file (if it is a regular file or a sym
link) in bytes. T

he size of a sym
link

is the length of the pathnam
e it contains, w

ithout trailing N
U

L.

T
he follow

ing P
O

S
IX

 m
acros are defined to check the file type in the field

st_
m

o
d

e
:

S
_IS

R
E

G
(m

)
isit a regular file?

S
_IS

D
IR

(m
)

directory?

R
E

T
U

R
N

 VA
LU

E
O

n success, zero is returned.
O

n error
,−

1
is

returned, ande
rrn

o
is set appropriately.

E
R

R
O

R
SE

A
C

C
E

S
S

earch perm
isson is denied for one of the directories in the path prefix of

p
a

th
.

E
N

O
E

N
T

A
com

ponent ofp
a

th
does not exist, orpa

th
is an em

pty string.

E
N

O
T

D
IR

A
com

ponent of the path prefix of
p

a
th

is not a directory.

S
P

-M
iniklausur M

anual-A
uszug

2013-10-24
1

w
aitpid(2)

w
aitpid(2)

N
A

M
E

w
aitpid −

 w
ait for child process to change state

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/w

ait.h>

pid_t w
aitpid(pid_t

p
id

,int *
sta

t_
lo

c,int
o

p
tio

n
s);

D
E

S
C

R
IP

T
IO

N
w

aitpid()
suspends the calling process until one of its children changes state; if a child process changed

state prior to the call tow
aitpid(),return is im

m
ediate.p

id
specifies a set of child processes for w

hich sta-
tus is requested.

If
p

id
is equal to(pid_t)−

1,status is requested for an
y

child process.

If
p

id
is greater than(pid_t)0,

it
specifies the processID

of the child process for w
hich status is

requested.

If
p

id
is equal to(pid_t)0

status is requested for an
y

child process w
hose process group

ID
is equal

to that of the calling process.

If
p

id
is less than(pid_t)−

1,
status is requested for an

y
child process w

hose process group
ID

is
equal to the absolute value of

p
id

.

If
w

aitpid()
returns because the status of a child process is a

vailable, then that status m
ay be e

valuated w
ith

the m
acros defined bywstat(5).

If the calling process had specified a non-zero value of
sta

t_
lo

c,the status
of the child process w

ill be stored in the location pointed to by
sta

t_
lo

c.

T
he

o
p

tio
n

sargum
ent is constructed from

 the bitw
ise inclusi

ve
O

R
of zero or m

ore of the following flags,
defined in the header<sys/w

ait.h>:

W
C

O
N

T
IN

U
E

D
T

he status of any
continued child process specified by

p
id,

w
hose status has not

been reported since it continued, is also reported to the calling process.

W
N

O
H

A
N

G
w

aitpid()
w

ill not suspend execution of the calling process if status is not im
m

e-
diately available for one of the child processes specified by

p
id

.

W
N

O
W

A
IT

K
eep the process w

hose status is returned in
sta

t_
lo

c
in a w

aitable state. T
he

process m
ay be w

aited for again w
ith identical results.

R
E

T
U

R
N

 VA
LU

E
S

If
w

aitpid()
returns because the status of a child process is a

vailable, this function returns a value equal to
the processID

of the child process for w
hich status is reported.

If
w

aitpid()
returns due to the deli

very of a
signal to the calling process,

−
1

is returned anderrno
is set toE

IN
T

R
.

If
this function w

as invoked
w

ith
W

N
O

H
A

N
G

set in
o

p
tio

n
s,ithas at least one child process specified by

p
id

for w
hich status is not available,

and status is not available for any
process specified bypid,

0
is returned.O

therw
ise,−

1
is returned, and

errno
is set to indicate the error.

E
R

R
O

R
Sw

aitpid()
w

ill fail if one or m
ore of the follow

ing is true:

E
C

H
ILD

T
he process or process group specified by

p
id

does not exist or is not a child of the call-
ing process or can ne

ver
be

in
the states specified byop

tio
n

s.

E
IN

T
R

w
aitpid()

w
as

interrupted due to the receipt of a signal sent by the calling process.

E
IN

VA
L

A
n invalid value w

as specified forop
tio

n
s.

S
E

E
 A

LS
Oexec(2),exit(2),fork

(2),sigaction(2),w
stat(5)

S
P

-M
iniklausur M

anual-A
uszug

2013-10-24
1

