
exec(2) exec(2)

NAME
exec, execl, execv, execle, execve, execlp, execvp − execute a file

SYNOPSIS
#include <unistd.h>

int execl(const char *path, const char *arg0, . . ., const char *argn, char * /*NULL*/ );

int execv(const char *path, char *const argv[ ] );

int execle(const char *path,char *const arg0[ ] , . . .  ,  const char *argn,
char * /*NULL*/ , char *const envp[ ] );

int execve (const char *path, char *const argv[ ] char *const envp[ ] );

int execlp (const char *file, const char *arg0, . . ., const char *argn, char * /*NULL*/ );

int execvp (const char *file, char *const argv[ ] );

DESCRIPTION
Each of the functions in theexecfamily overlays a new process image on an old process. The new process
image is constructed from an ordinary, executable file. This file is either an executable object file, or a file
of data for an interpreter. There can be no return from a successful call to one of these functions because
the calling process image is overlaid by the new process image.

When a C program is executed, it is called as follows:

int main (int argc, char ∗ argv[], char ∗ envp[]);

whereargc is the argument count,argv is an array of character pointers to the arguments themselves, and
envpis an array of character pointers to the environment strings. As indicated,argc is at least one, and the
first member of the array points to a string containing the name of the file.

The argumentsarg0, . . ., argn point to null-terminated character strings.These strings constitute the argu-
ment list available to the new process image.Conventionally at leastarg0 should be present.The arg0
argument points to a string that is the same aspath (or the last component ofpath). Thelist of argument
strings is terminated by a(char ∗ )0 argument.

Theargv argument is an array of character pointers to null-terminated strings. These strings constitute the
argument list available to the new process image. By convention,argv must have at least one member, and
it should point to a string that is the same aspath (or its last component).Theargv argument is terminated
by a null pointer.

Thepath argument points to a path name that identifies the new process file.

Thefile argument points to the new process file.If file does not contain a slash character, the path prefix for
this file is obtained by a search of the directories passed in thePATH environment variable (seeenviron(5)).

File descriptors open in the calling process remain open in the new process.

Signals that are being caught by the calling process are set to the default disposition in the new process
image (seesignal(3C)). Otherwise,the new process image inherits the signal dispositions of the calling
process.

RETURN VALUES
If a function in theexecfamily returns to the calling process, an error has occurred; the return value is−1
anderrno is set to indicate the error.

SPI-Klausur Manual-Auszug 2003-07-23 1

stat(2) stat(2)

NAME
stat, lstat − get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char *file_name, struct stat * buf );
int lstat(const char * file_name, struct stat * buf );

DESCRIPTION
These functions return information about the specified file.You do not need any access rights to the file to
get this information but you need search rights to all directories named in the path leading to the file.

stat stats the file pointed to byfile_nameand fills inbuf .

lstat is identical tostat, except in the case of a symbolic link, where the link itself is stat-ed, not the file that
it refers to.

They all return astatstructure, which contains the following fields:

struct stat {
dev_t st_dev; /* device */
ino_t st_ino; /* inode */
mode_t st_mode; /* protection */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device type (if inode device) */
off_t st_size; /* total size, in bytes */
blksize_t st_blksize;/* blocksize for filesystem I/O */
blkcnt_t st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

};

The valuest_sizegives the size of the file (if it is a regular file or a symlink) in bytes. The size of a symlink
is the length of the pathname it contains, without trailing NUL.

Not all of the Linux filesystems implement all of the time fields. Some file system types allow mounting in
such a way that file accesses do not cause an update of thest_atimefield. (See ‘noatime’ inmount(8).)

The fieldst_atimeis changed by file accesses, e.g. byexecve(2), mknod(2), pipe(2), utime(2) andread(2)
(of more than zero bytes). Other routines, likemmap(2), may or may not updatest_atime.

The fieldst_mtimeis changed by file modifications, e.g. bymknod(2), truncate(2), utime(2) andwrite (2)
(of more than zero bytes).Moreover, st_mtimeof a directory is changed by the creation or deletion of files
in that directory. Thest_mtimefield isnotchanged for changes in owner, group, hard link count, or mode.

The fieldst_ctimeis changed by writing or by setting inode information (i.e., owner, group, link count,
mode, etc.).

RETURN VALUE
On success, zero is returned. On error, −1 is returned, anderrno is set appropriately.

SP-Miniklausur Manual-Auszug 2008-12-11 1



printf(3) printf(3)

NAME
printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf − formatted output conversion

SYNOPSIS
#include <stdio.h>

int printf(const char * format, ...);
int fprintf(FILE * stream, const char * format, ...);
int sprintf(char * str, const char * format, ...);
int snprintf(char * str, size_t size, const char * format, ...);

...

DESCRIPTION
The functions in theprintf () family produce output according to aformat as described below. The func-
tions printf () and vprintf () write output tostdout, the standard output stream;fprintf () and vfprintf ()
write output to the given outputstream; sprintf (), snprintf (), vsprintf () andvsnprintf () write to the char-
acter stringstr.

The functionssnprintf () andvsnprintf () write at mostsizebytes (including the trailing null byte ('\0')) to
str.

The functionsvprintf (), vfprintf (), vsprintf (), vsnprintf () are equivalent to the functionsprintf (),
fprintf (), sprintf (), snprintf (), respectively, except that they are called with ava_list instead of a variable
number of arguments. Thesefunctions do not call theva_endmacro. Becausethey inv oke the va_arg
macro, the value ofap is undefined after the call. Seestdarg(3).

These eight functions write the output under the control of aformat string that specifies how subsequent
arguments (or arguments accessed via the variable-length argument facilities ofstdarg(3)) are converted for
output.

Return value
Upon successful return, these functions return the number of characters printed (not including the trailing
'\0' used to end output to strings).

The functionssnprintf () andvsnprintf () do not write more thansizebytes (including the trailing '\0').If
the output was truncated due to this limit then the return value is the number of characters (not including
the trailing '\0') which would have been written to the final string if enough space had been available. Thus,
a return value ofsizeor more means that the output was truncated. (See also below under NOTES.)

If an output error is encountered, a negative value is returned.

Format of the format string
The format string is a character string, beginning and ending in its initial shift state, if any. The format
string is composed of zero or more directives: ordinary characters (not% ), which are copied unchanged to
the output stream; and conversion specifications, each of which results in fetching zero or more subsequent
arguments. Eachconversion specification is introduced by the character% , and ends with aconversion
specifier. In between there may be (in this order) zero or moreflags, an optional minimumfield width, an
optionalprecisionand an optionallength modifier.

The arguments must correspond properly (after type promotion) with the conversion specifier. By default,
the arguments are used in the order given, where each '*' and each conversion specifier asks for the next
argument (and it is an error if insufficiently many arguments are given). Onecan also specify explicitly
which argument is taken, at each place where an argument is required, by writing "%m$" instead of '%' and
"*m$" instead of '*', where the decimal integer m denotes the position in the argument list of the desired
argument, indexed starting from 1. Thus,

printf("%*d", width, num);

SP-Miniklausur Manual-Auszug 2008-12-11 1

printf(3) printf(3)

and

printf("%2$*1$d", width, num);

are equivalent. Thesecond style allows repeated references to the same argument. TheC99 standard does
not include the style using '$', which comes from the Single Unix Specification. If the style using '$' is
used, it must be used throughout for all conversions taking an argument and all width and precision argu-
ments, but it may be mixed with "%%" formats which do not consume an argument. Theremay be no gaps
in the numbers of arguments specified using '$'; for example, if arguments 1 and 3 are specified, argument 2
must also be specified somewhere in the format string.

For some numeric conversions a radix character ("decimal point") or thousands’ grouping character is used.
The actual character used depends on theLC_NUMERIC part of the locale. The POSIX locale uses '.' as
radix character, and does not have a grouping character. Thus,

printf("%'.2f", 1234567.89);

results in "1234567.89" in the POSIX locale, in "1234567,89" in the nl_NL locale, and in "1.234.567,89" in
the da_DK locale.

The conversion specifier
A character that specifies the type of conversion to be applied. An example for a conversion specifier is:

s The const char *argument is expected to be a pointer to an array of character type (pointer to a
string). Charactersfrom the array are written up to (but not including) a terminating null byte
('\0'); if a precision is specified, no more than the number specified are written.If a precision is
given, no null byte need be present; if the precision is not specified, or is greater than the size of
the array, the array must contain a terminating null byte.

SEE ALSO
printf (1), asprintf (3), dprintf (3), scanf(3), setlocale(3), wcrtomb(3), wprintf (3), locale(5)

COLOPHON
This page is part of release 3.05 of the Linuxman-pages project. Adescription of the project, and informa-
tion about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.

SP-Miniklausur Manual-Auszug 2008-12-11 2


