PTHREAD_COND(3) PTHREAD_COND(3) PTHREAD_COND(3) PTHREAD_COND(3)

NAME signaled (and thus ignored) between the time a thread locks theandtthe time it waits on the condition
pthread_cond_init, pthread_cond_degtro pthread_cond_signal, pthread_cond_broadcast, variable.
pthread_cond_wait, pthread_cond_timedwait — operations on conditions
pthread_cond_timedwait atomically unlocksnutex and waits orcond, as pthread_cond_wait does, but it

SYNOPSIS also bounds the duration of the waitctind has not been signaled within the amount of time specified by
#include <pthread.h> abstime, the mute mutex is re-acquired ang@thread_cond_timedwait returns the erroETIMEDOUT.
The abstime parameter specifies an absolute time, with the same origime@) andgettimeofday(2): an
pthread_cond_t cond = PTHREAD_COND_INITIALIZER; abstime of 0 corresponds to 00:00:00 GMJanuary 1, 1970.
int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr); pthrea_d__cond_deﬂroy d_e_smys a condition variable, freeing the resources it might hold. No th_reads must
- - - - - - - be waiting on the condition variable on entrancettaread_cond_destroy. In the LinuxThreads imple-
int pthread_cond_signal (pthread_cond._t *cond); mentation, no resources are associated with condition variablegttead_cond_destroy actually does

nothing except checking that the condition has no waiting threads.

int pthread_cond_broadcast(pthread_cond_t *cond);
CANCELLATION

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t * mutex); pthread_cond_wait and pthread_cond_timedwait are cancellation points. If a thread is cancelled while
suspended in one of these functions, the thread immediately resxeoesos, then locks again theutex

int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t * mutex, const struct timespec argument topthread_cond_wait and pthread_cond_timedwait, and finally eecutes the cancellation.

* abstime); Consequentlycleanup handlers are assured thatex is locked when theare called.

int pthread_cond_destroy(pthread_cond_t * cond); ASYNC-SIGNAL SAFETY

The condition functions are not async-signal safe, and should not be called from a signal Ingvedté-
DESCRIPTION ular, calling pthread_cond_signal or pthread_cond_broadcast from a signal handler may deadlock the
A condition (short for “condition ariable’) is a synchronization device that allows threads to suspend calling thread.
execution and relinquish the processors until some predicate on shared data is satisfied. The basic opera-
tions on conditions are: signal the condition (when the predicate becomes true), and wait for the condition,

) ’ - h - RETURN VALUE
suspending the threadeeution until another thread signals the condition.

All condition variable functions return 0 on success and a non-zero error code on error.

A condition variable must alays be associated with a mutex, imid the race condition where a thread
prepares to wait on a conditioariable and another thread signals the condition just before the first thread ERRORS
actually waits on it. pthread_cond_init, pthread_cond_signal, pthread_cond_broadcast, and pthread_cond_wait never
return an error code.
pthread_cond_init initializes the condition ariable cond, using the condition attributes specified in)))]
cond_attr, or default attributes ifcond attr is NULL. The LinuxThreads implementation supports no Thepthread_cond_timedwait function returns the following error codes on error:
attributes for conditions, hence tbend_attr parameter is actually ignored. ETIMEDOUT
) o)) the condition variable was not signaled until the timeout specifietidiyne
Variables of type pthread_cond_t can also be initialized statically using the constant

PTHREAD_COND_INITIALIZER.
- - EINTR

pthread_cond_signal restarts one of the threads that amgtiwg on the condition ariablecond. If no pthread_cond_timedwait was interrupted by a signal

threads are witing on cond, nothing happens. If seral threads are waiting ocond, exactly one is))

restarted, but it is not specified which. Thepthread_cond_destroy function returns the following error code on error:
EBUSY

pthread_cond_broadcast restarts all the threads that are waiting on the condiawialMecond. Nothing some threads are currently waitingaamd.

happens if no threads are waitingamnd.

AUTHOR

pthread_cond_wait atomically unlocks thenutex (as pempthread_unlock_mutex) and waits for the con- Xavier Leryy <Xavier.Leroy@inria.fr>

dition variablecond to be signaled. The threageeution is suspended and does not consumeCat time
until the condition ariable is signaled. Thewtex must be locked by the calling thread on entrance to

pthread_cond_wait. Before returning to the calling threguthread_cond_wait re-acquiresnutex (as per SEE ALSO
pthread_lock_mutex). pthread_condattr_init(3), pthread_mutex_lock(3), pthread_mutex_unlock(3), gettimeofday(2),
o nanosleep(2).

Unlocking the mute and suspending on the condition variable is done atomicBliiys, if all threads
always acquire the muxebefore signaling the condition, this guarantees that the condition cannot be

SOS1-Klausur Manual-Auszug 2007-07-19 1 SOS1-Klausur Manual-Auszug 2007-07-19 2

PTHREAD_MUTEX(3) PTHREAD_MUTEX(3)

pthread_mute init, pthread_mutex_lock, pthread_mutex_trylock, pthread xmutdock,
pthread_mutex_destyoe- operations on muses

SYNOPSIS

#include <pthread.h>

pthread_mutex_t fastmutex = PTHREAD_MUTEX_INITIALIZER,;

pthread_mutex_t recmutex = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
pthread_mutex_t errchkmutex = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
int pthread_mutex_init(pthread_mutex_t * mutex, const pthread_mutexattr_t * mutexattr);

int pthread_mutex_lock (pthread_mutex_t * mutex);

int pthread_mutex_trylock (pthread_mutex_t * mutex);

int pthread_mutex_unlock(pthread_mutex_t * mutex);

int pthread_mutex_destroy(pthread_mutex_t * mutex);

DESCRIPTION

A mutex is a MUTual EXclusion device, and is useful for protecting shared data structures from concurrent
modifications, and implementing critical sections and monitors.

A mutex has two possible states: unlocked (not owned by #imead), and locked (owned by one thread). A
mutex can neer be avned by twp different threads simultaneouslky thread attempting to lock a mute
that is already locked by another thread is suspended until the owning thread unlocks:tligsnute

pthread_mutex_init initializes the mute object pointed to bymutex according to the muteattributes
specified inmutexattr. If mutexattr is NULL, default attributes are used instead.

The LinuxThreads implementation supports only one matibutes, themutex kind, which is either
“fast”, ‘‘recursve”, or “error checking”. The kind of a mukedetermines whether it can be lockedmg
by a thread that already owns it. The default kindfast”. See pthread_mutexattr_init(3) for more
information on mute attributes.

Variables of type pthread_mutex_t can also be initialized staticallyusing the constants
PTHREAD_MUTEX_INITIALIZER (for fast mutges), PTHREAD_RECURSIVE_MUTEX_INI-
TIALIZER_NP (for recursie mnutexes), and PTHREAD_ERRORCHECK_MUTEX_INITIAL-
IZER_NP (for error checking mutes).

pthread_mutex_lock locks the giren mutex. If the mute is currently unlocled, it becomes locked and
owned by the calling thread, apthread_mutex_lock returns immediatelyif the mute is dready locled
by another threaghthread_mutex_lock suspends the calling thread until the muiseunlocked.

If the mutex is dready locked by the calling thread, the bebraof pthread_mutex_lock depends on the
kind of the mutex. If the mueis of the ‘fast” kind, the calling thread is suspended until the mise
unlocked, thus déctively causing the calling thread to deadlock. If the mugeof the “error checking’
kind, pthread_mutex_lock returns immediately with the error coDEADLK. If the muta is of the
“recursve” kind, pthread_mutex_lock succeeds and returns immediategcording the number of times
the calling thread has loel the mutex. An equal number mthread_mutex_unlock operations must be

SOS1-Klausur Manual-Auszug 2007-07-19 1

PTHREAD_MUTEX(3) PTHREAD_MUTEX(3)

performed before the muteeturns to the unlocked state.

pthread_mutex_trylock behaes identically topthread_mutex_lock, except that it does not block the
calling thread if the museis dready locked by another thread (or by the calling thread in the case of a
“fast” mutex). Insteadpthread_mutex_trylock returns immediately with the error coBBUSY .

pthread_mutex_unlock unlocks the gien mutex. The mute is assumed to be locked and owned by the
calling thread on entrance t@thread_mutex_unlock. If the mute is of the ‘fast” kind,
pthread_mutex_unlock always returns it to the unloekl state. If it is of the'recursve” kind, it decre-
ments the locking count of the mutéhumber ofpthread_mutex_lock operations performed on it by the
calling thread), and only when this count reaches zero is thex anitally unlocked.

On “error checking’ mutexes, pthread_mutex_unlock actually checks at run-time that the muis
locked on entrance, and that it was locked by the same thread that ¢alfing pthread_mutex_unlock.
If these conditions are not met, an error code is returned and the mmotains unchanged: Fast” and
“recursve” mutexes perform no such checks, thus aliog a locked muteto be wlocked by a thread
other than its ownefhis is non-portable behavior and must not be relied upon.

pthread_mutex_destroy destrgs a mut& object, freeing the resources it might hold. The muteist be
unlocked on entrance. In the LinuxThreads implementation, no resources are associated witijexctte
thuspthread_mutex_destroy actually does nothing except checking that the ristenlocked.

RETURN VALUE

pthread_mutex_init always returns 0. The other mutéunctions return 0 on success and a non-zero error
code on error.

ERRORS

Thepthread_mutex_lock function returns the following error code on error:

EINVAL
the mute has not been properly initialized.

EDEADLK
the mute is dready locked by the calling thread (“error checkimgutexes anly).

Thepthread_mutex_unlock function returns the following error code on error:

EINVAL
the mute has not been properly initialized.

EPERM
the calling thread does not own the mxuteerror checking’mutexes anly).

Thepthread_mutex_destroy function returns the following error code on error:

EBUSY
the mute is currently locked.

AUTHOR

Xavier Lergy <Xavier.Leroy@inria.fr>

SEE ALSO

pthread_mutexattr_init(3), pthread_mutexattr_setkind_np(3), pthread_cancel(3).

SOS1-Klausur Manual-Auszug 2007-07-19 2

