
PTHREAD_COND(3) PTHREAD_COND(3)

NAME
pthread_cond_init, pthread_cond_destroy, pthread_cond_signal, pthread_cond_broadcast,
pthread_cond_wait, pthread_cond_timedwait − operations on conditions

SYNOPSIS
#include <pthread.h>

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

int pthread_cond_init(pthread_cond_t *cond , pthread_condattr_t *cond_attr);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_wait(pthread_cond_t *cond , pthread_mutex_t *mutex);

int pthread_cond_timedwait(pthread_cond_t *cond , pthread_mutex_t *mutex, const struct timespec
*abstime);

int pthread_cond_destroy(pthread_cond_t *cond);

DESCRIPTION
A condition (short for ‘‘condition variable’’) is a synchronization device that allows threads to suspend
execution and relinquish the processors until some predicate on shared data is satisfied. The basic opera-
tions on conditions are: signal the condition (when the predicate becomes true), and wait for the condition,
suspending the thread execution until another thread signals the condition.

A condition variable must always be associated with a mutex, to avoid the race condition where a thread
prepares to wait on a condition variable and another thread signals the condition just before the first thread
actually waits on it.

pthread_cond_init initializes the condition variable cond, using the condition attributes specified in
cond_attr, or default attributes ifcond_attr is NULL. The LinuxThreads implementation supports no
attributes for conditions, hence thecond_attr parameter is actually ignored.

Variables of type pthread_cond_t can also be initialized statically, using the constant
PTHREAD_COND_INITIALIZER.

pthread_cond_signal restarts one of the threads that are waiting on the condition variablecond. If no
threads are waiting on cond, nothing happens. If several threads are waiting oncond, exactly one is
restarted, but it is not specified which.

pthread_cond_broadcast restarts all the threads that are waiting on the condition variablecond. Nothing
happens if no threads are waiting oncond.

pthread_cond_wait atomically unlocks themutex (as perpthread_unlock_mutex) and waits for the con-
dition variablecond to be signaled. The thread execution is suspended and does not consume any CPU time
until the condition variable is signaled. Themutex must be locked by the calling thread on entrance to
pthread_cond_wait. Before returning to the calling thread,pthread_cond_wait re-acquiresmutex (as per
pthread_lock_mutex).

Unlocking the mutex and suspending on the condition variable is done atomically. Thus, if all threads
always acquire the mutex before signaling the condition, this guarantees that the condition cannot be

SOS1-Klausur Manual-Auszug 2005-07-14 1

PTHREAD_COND(3) PTHREAD_COND(3)

signaled (and thus ignored) between the time a thread locks the mutex and the time it waits on the condition
variable.

pthread_cond_timedwait atomically unlocksmutex and waits oncond, as pthread_cond_wait does, but it
also bounds the duration of the wait. Ifcond has not been signaled within the amount of time specified by
abstime, the mutex mutex is re-acquired andpthread_cond_timedwait returns the errorETIMEDOUT.
Theabstime parameter specifies an absolute time, with the same origin astime(2) andgettimeofday(2): an
abstime of 0 corresponds to 00:00:00 GMT, January 1, 1970.

pthread_cond_destroy destroys a condition variable, freeing the resources it might hold. No threads must
be waiting on the condition variable on entrance topthread_cond_destroy. In the LinuxThreads imple-
mentation, no resources are associated with condition variables, thuspthread_cond_destroy actually does
nothing except checking that the condition has no waiting threads.

CANCELLATION
pthread_cond_wait andpthread_cond_timedwait are cancellation points. If a thread is cancelled while
suspended in one of these functions, the thread immediately resumes execution, then locks again themutex
argument topthread_cond_wait and pthread_cond_timedwait, and finally executes the cancellation.
Consequently, cleanup handlers are assured thatmutex is locked when they are called.

ASYNC-SIGNAL SAFETY
The condition functions are not async-signal safe, and should not be called from a signal handler. In partic-
ular, calling pthread_cond_signal or pthread_cond_broadcast from a signal handler may deadlock the
calling thread.

RETURN VALUE
All condition variable functions return 0 on success and a non-zero error code on error.

ERRORS
pthread_cond_init, pthread_cond_signal, pthread_cond_broadcast, and pthread_cond_wait never
return an error code.

Thepthread_cond_timedwait function returns the following error codes on error:

ETIMEDOUT
the condition variable was not signaled until the timeout specified byabstime

EINTR
pthread_cond_timedwait was interrupted by a signal

Thepthread_cond_destroy function returns the following error code on error:

EBUSY
some threads are currently waiting oncond.

AUTHOR
Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_condattr_init(3), pthread_mutex_lock(3), pthread_mutex_unlock(3), gettimeofday(2),
nanosleep(2).

SOS1-Klausur Manual-Auszug 2005-07-14 2



PTHREAD_MUTEX(3) PTHREAD_MUTEX(3)

NAME
pthread_mutex_init, pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock,
pthread_mutex_destroy − operations on mutexes

SYNOPSIS
#include <pthread.h>

pthread_mutex_t fastmutex = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_t recmutex = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;

pthread_mutex_t errchkmutex = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutexattr);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

DESCRIPTION
A mutex is a MUTual EXclusion device, and is useful for protecting shared data structures from concurrent
modifications, and implementing critical sections and monitors.

A mutex has two possible states: unlocked (not owned by any thread), and locked (owned by one thread). A
mutex can never be owned by two different threads simultaneously. A thread attempting to lock a mutex
that is already locked by another thread is suspended until the owning thread unlocks the mutex first.

pthread_mutex_init initializes the mutex object pointed to bymutex according to the mutex attributes
specified inmutexattr. If mutexattr is NULL, default attributes are used instead.

The LinuxThreads implementation supports only one mutex attributes, themutex kind, which is either
‘‘ fast’’, ‘ ‘recursive’’ , or ‘‘error checking’’. The kind of a mutex determines whether it can be locked again
by a thread that already owns it. The default kind is ‘‘fast’’. Seepthread_mutexattr_init(3) for more
information on mutex attributes.

Variables of type pthread_mutex_t can also be initialized statically, using the constants
PTHREAD_MUTEX_INITIALIZER (for fast mutexes), PTHREAD_RECURSIVE_MUTEX_INI-
TIALIZER_NP (for recursive mutexes), and PTHREAD_ERRORCHECK_MUTEX_INITIAL-
IZER_NP (for error checking mutexes).

pthread_mutex_lock locks the given mutex. If the mutex is currently unlocked, it becomes locked and
owned by the calling thread, andpthread_mutex_lock returns immediately. If the mutex is already locked
by another thread,pthread_mutex_lock suspends the calling thread until the mutex is unlocked.

If the mutex is already locked by the calling thread, the behavior of pthread_mutex_lock depends on the
kind of the mutex. If the mutex is of the ‘‘fast’’ k ind, the calling thread is suspended until the mutex is
unlocked, thus effectively causing the calling thread to deadlock. If the mutex is of the ‘‘error checking’’
kind, pthread_mutex_lock returns immediately with the error codeEDEADLK. If the mutex is of the
‘‘ recursive’’ k ind, pthread_mutex_lock succeeds and returns immediately, recording the number of times
the calling thread has locked the mutex. An equal number ofpthread_mutex_unlock operations must be

SOS1-Klausur Manual-Auszug 2005-07-14 1

PTHREAD_MUTEX(3) PTHREAD_MUTEX(3)

performed before the mutex returns to the unlocked state.

pthread_mutex_trylock behaves identically topthread_mutex_lock, except that it does not block the
calling thread if the mutex is already locked by another thread (or by the calling thread in the case of a
‘‘ fast’’ mutex). Instead,pthread_mutex_trylock returns immediately with the error codeEBUSY.

pthread_mutex_unlock unlocks the given mutex. The mutex is assumed to be locked and owned by the
calling thread on entrance topthread_mutex_unlock. If the mutex is of the ‘‘fast’’ k ind,
pthread_mutex_unlock always returns it to the unlocked state. If it is of the ‘‘recursive’’ k ind, it decre-
ments the locking count of the mutex (number ofpthread_mutex_lock operations performed on it by the
calling thread), and only when this count reaches zero is the mutex actually unlocked.

On ‘‘error checking’’ mutexes, pthread_mutex_unlock actually checks at run-time that the mutex is
locked on entrance, and that it was locked by the same thread that is now calling pthread_mutex_unlock.
If these conditions are not met, an error code is returned and the mutex remains unchanged.‘‘ Fast’’ and
‘‘ recursive’’ mutexes perform no such checks, thus allowing a locked mutex to be unlocked by a thread
other than its owner. This is non-portable behavior and must not be relied upon.

pthread_mutex_destroy destroys a mutex object, freeing the resources it might hold. The mutex must be
unlocked on entrance. In the LinuxThreads implementation, no resources are associated with mutex objects,
thuspthread_mutex_destroy actually does nothing except checking that the mutex is unlocked.

RETURN VALUE
pthread_mutex_init always returns 0. The other mutex functions return 0 on success and a non-zero error
code on error.

ERRORS
Thepthread_mutex_lock function returns the following error code on error:

EINVAL
the mutex has not been properly initialized.

EDEADLK
the mutex is already locked by the calling thread (‘‘error checking’’ mutexes only).

Thepthread_mutex_unlock function returns the following error code on error:

EINVAL
the mutex has not been properly initialized.

EPERM
the calling thread does not own the mutex (‘‘ error checking’’ mutexes only).

Thepthread_mutex_destroy function returns the following error code on error:

EBUSY
the mutex is currently locked.

AUTHOR
Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_mutexattr_init(3), pthread_mutexattr_setkind_np(3), pthread_cancel(3).

SOS1-Klausur Manual-Auszug 2005-07-14 2


