
accept(2) accept(2)

NAME

accept − accept a connection on a socket

SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, int *addrlen);

DESCRIPTION

The argument s is a socket that has been created with socket(3N) and bound to an address with bind(3N),

and that is listening for connections after a call to listen(3N). The accept() function extracts the first con-

nection on the queue of pending connections, creates a new socket with the properties of s, and allocates a

new file descriptor, ns, for the socket. If no pending connections are present on the queue and the socket is

not marked as non-blocking, accept() blocks the caller until a connection is present. If the socket is

marked as non-blocking and no pending connections are present on the queue, accept() returns an error as

described below. The accept() function uses the netconfig(4) file to determine the STREAMS device file

name associated with s. This is the device on which the connect indication will be accepted. The accepted

socket, ns, is used to read and write data to and from the socket that connected to ns; it is not used to accept

more connections. The original socket (s) remains open for accepting further connections.

The argument addr is a result parameter that is filled in with the address of the connecting entity as it is

known to the communications layer. The exact format of the addr parameter is determined by the domain

in which the communication occurs.

The argument addrlen is a value-result parameter. Initially, it contains the amount of space pointed to by

addr; on return it contains the length in bytes of the address returned.

The accept() function is used with connection-based socket types, currently with SOCK_STREAM.

It is possible to select(3C) or poll(2) a socket for the purpose of an accept() by selecting or polling it for a

read. However, this will only indicate when a connect indication is pending; it is still necessary to call

accept().

RETURN VALUES

The accept() function returns −1 on error. If it succeeds, it returns a non-negative integer that is a descrip-

tor for the accepted socket.

ERRORS

accept() will fail if:

EBADF The descriptor is invalid.

EINTR The accept attempt was interrupted by the delivery of a signal.

EMFILE The per-process descriptor table is full.

ENODEV The protocol family and type corresponding to s could not be found in the netcon-

fig file.

ENOMEM There was insufficient user memory available to complete the operation.

EPROT O A protocol error has occurred; for example, the STREAMS protocol stack has not

been initialized or the connection has already been released.

EWOULDBLOCK The socket is marked as non-blocking and no connections are present to be

accepted.

SEE ALSO

poll(2), bind(3N), connect(3N), listen(3N), select(3C), socket(3N), netconfig(4), attributes(5), socket(5)

SP-Klausur Manual-Auszug 2018-02-21 1

bbuffer(3) bbuffer(3)

NAME

bbCreate, bbPut, bbGet, bbDestroy − A synchronized bounded-buffer implementation

SYNOPSIS

#include ’’bbuffer.h’’

BNDBUF *bbCreate(size_t size);

void bbPut(BNDBUF * bb, void * value);

void* bbGet(BNDBUF * bb);

void bbDestroy(BNDBUF * bb);

DESCRIPTION

Bounded-buffer implementation of a FIFO queue. Manages void* and supports multiple concurrent read-

ers and writers. Provides the following functions:

bbCreate() creates a new bounded buffer for up to size elements. If an error occurs during the initializa-

tion, the implementation frees all resources already allocated by then and returns NULL.

bbPut() stores the value in the bounded buffer. If the buffer is full (i.e., it currently contains size elements),

the call to bbPut() blocks until the value can be stored.

bbGet() returns the next value from the bounded buffer. If the buffer is empty, the call blocks until a value

is available.

Both bbPut() and bbGet() are synchronized internally and thus can be called concurrently without the need

for further synchronization.

bbDestroy() releases any resources related to the bounded buffer itself. It does not call free() on the ele-

ments stored in the buffer.

RETURN VALUE

bbCreate() returns a pointer to the allocated bounded buffer, or NULL if the request fails.

bbPut() returns no value.

bbGet() returns the next value stored in the bounded buffer.

bbDestroy() returns no value.

SP-Klausur Manual-Auszug 2018-02-21 1

bind(2) bind(2)

NAME

bind − bind a name to a socket

SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

int bind(int s, const struct sockaddr *name, int namelen);

DESCRIPTION

bind() assigns a name to an unnamed socket. When a socket is created with socket(3N), it exists in a name

space (address family) but has no name assigned. bind() requests that the name pointed to by name be

assigned to the socket.

RETURN VALUES

If the bind is successful, 0 is returned. A return value of −1 indicates an error, which is further specified in

the global errno.

ERRORS

The bind() call will fail if:

EACCES The requested address is protected and the current user has inadequate permission

to access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available on the local machine.

EBADF s is not a valid descriptor.

EINVAL namelen is not the size of a valid address for the specified address family.

EINVAL The socket is already bound to an address.

ENOSR There were insufficient STREAMS resources for the operation to complete.

ENOTSOCK s is a descriptor for a file, not a socket.

The following errors are specific to binding names in the UNIX domain:

EACCES Search permission is denied for a component of the path prefix of the pathname in

name.

EIO An I/O error occurred while making the directory entry or allocating the inode.

EISDIR A null pathname was specified.

ELOOP Too many symbolic links were encountered in translating the pathname in name.

ENOENT A component of the path prefix of the pathname in name does not exist.

ENOTDIR A component of the path prefix of the pathname in name is not a directory.

EROFS The inode would reside on a read-only file system.

SEE ALSO

unlink(2), socket(3N), attributes(5), socket(5)

NOTES

Binding a name in the UNIX domain creates a socket in the file system that must be deleted by the caller

when it is no longer needed (using unlink(2)).

The rules used in name binding vary between communication domains.

SP-Klausur Manual-Auszug 2018-02-21 1

dup(2) dup(2)

NAME

dup, dup2 − duplicate a file descriptor

SYNOPSIS

#include <unistd.h>

int dup(int oldfd);

int dup2(int oldfd , int newfd);

DESCRIPTION

dup() and dup2() create a copy of the file descriptor oldfd .

dup() uses the lowest-numbered unused descriptor for the new descriptor.

dup2() makes newfd be the copy of oldfd , closing newfd first if necessary, but note the following:

* If oldfd is not a valid file descriptor, then the call fails, and newfd is not closed.

* If oldfd is a valid file descriptor, and newfd has the same value as oldfd , then dup2() does nothing, and

returns newfd .

After a successful return from dup() or dup2(), the old and new file descriptors may be used interchange-

ably. They refer to the same open file description (see open(2)) and thus share file offset and file status

flags; for example, if the file offset is modified by using lseek(2) on one of the descriptors, the offset is also

changed for the other.

The two descriptors do not share file descriptor flags (the close-on-exec flag). The close-on-exec flag

(FD_CLOEXEC; see fcntl(2)) for the duplicate descriptor is off.

RETURN VALUE

dup() and dup2() return the new descriptor, or −1 if an error occurred (in which case, errno is set appropri-

ately).

ERRORS

EBADF

oldfd isn’t an open file descriptor, or newfd is out of the allowed range for file descriptors.

EBUSY

(Linux only) This may be returned by dup2() during a race condition with open(2) and dup().

EINTR

The dup2() call was interrupted by a signal; see signal(7).

EMFILE

The process already has the maximum number of file descriptors open and tried to open a new

one.

NOTES

The error returned by dup2() is different from that returned by fcntl(..., F_DUPFD, ...) when newfd is out

of range. On some systems dup2() also sometimes returns EINVAL like F_DUPFD.

If newfd was open, any errors that would have been reported at close(2) time are lost. A careful program-

mer will not use dup2() without closing newfd first.

SEE ALSO

close(2), fcntl(2), open(2)

SP-Klausur Manual-Auszug 2018-02-21 1

feof/ferror/fileno(3) feof/ferror/fileno(3)

NAME

clearerr, feof, ferror, fileno − check and reset stream status

SYNOPSIS

#include <stdio.h>

void clearerr(FILE *stream);

int feof(FILE *stream);

int ferror(FILE *stream);

int fileno(FILE *stream);

DESCRIPTION

The function clearerr() clears the end-of-file and error indicators for the stream pointed to by stream.

The function feof() tests the end-of-file indicator for the stream pointed to by stream, returning non-zero if

it is set. The end-of-file indicator can only be cleared by the function clearerr().

The function ferror() tests the error indicator for the stream pointed to by stream, returning non-zero if it is

set. The error indicator can only be reset by the clearerr() function.

The function fileno() examines the argument stream and returns its integer descriptor.

For non-locking counterparts, see unlocked_stdio(3).

ERRORS

These functions should not fail and do not set the external variable errno. (However, in case fileno()

detects that its argument is not a valid stream, it must return −1 and set errno to EBADF.)

CONFORMING TO

The functions clearerr(), feof(), and ferror() conform to C89 and C99.

SEE ALSO

open(2), fdopen(3), stdio(3), unlocked_stdio(3)

SP-Klausur Manual-Auszug 2018-02-21 1

fopen/fdopen/fileno(3) fopen/fdopen/fileno(3)

NAME

fopen, fdopen, fileno − stream open functions

SYNOPSIS

#include <stdio.h>

FILE *fopen(const char *path, const char *mode);

FILE *fdopen(int fildes, const char *mode);

int fileno(FILE *stream);

DESCRIPTION

The fopen function opens the file whose name is the string pointed to by path and associates a stream with

it.

The argument mode points to a string beginning with one of the following sequences (Additional characters

may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.

r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned at the beginning

of the file.

w+ Open for reading and writing. The file is created if it does not exist, otherwise it is truncated. The

stream is positioned at the beginning of the file.

a Open for appending (writing at end of file). The file is created if it does not exist. The stream is

positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it does not exist.

The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descriptor, fildes. The mode of the stream

(one of the values "r", "r+", "w", "w+", "a", "a+") must be compatible with the mode of the file descriptor.

The file position indicator of the new stream is set to that belonging to fildes, and the error and end-of-file

indicators are cleared. Modes "w" or "w+" do not cause truncation of the file. The file descriptor is not

dup’ed, and will be closed when the stream created by fdopen is closed. The result of applying fdopen to a

shared memory object is undefined.

The function fileno() examines the argument stream and returns its integer descriptor.

RETURN VALUE

Upon successful completion fopen, fdopen and freopen return a FILE pointer. Otherwise, NULL is

returned and the global variable errno is set to indicate the error.

ERRORS

EINVAL

The mode provided to fopen, fdopen, or freopen was inv alid.

The fopen, fdopen and freopen functions may also fail and set errno for any of the errors specified for the

routine malloc(3).

The fopen function may also fail and set errno for any of the errors specified for the routine open(2).

The fdopen function may also fail and set errno for any of the errors specified for the routine fcntl(2).

SEE ALSO

open(2), fclose(3), fileno(3)

SP-Klausur Manual-Auszug 2018-02-21 1

getc/fgets/putc/fputs(3) getc/fgets/putc/fputs(3)

NAME

fgetc, fgets, getc, getchar, fputc, fputs, putc, putchar − input and output of characters and strings

SYNOPSIS

#include <stdio.h>

int fgetc(FILE *stream);

char *fgets(char *s, int size, FILE *stream);

int getc(FILE *stream);

int getchar(void);

int fputc(int c, FILE *stream);

int fputs(const char *s, FILE *stream);

int putc(int c, FILE *stream);

int putchar(int c);

DESCRIPTION

fgetc() reads the next character from stream and returns it as an unsigned char cast to an int, or EOF on

end of file or error.

getc() is equivalent to fgetc() except that it may be implemented as a macro which evaluates stream more

than once.

getchar() is equivalent to getc(stdin).

fgets() reads in at most one less than size characters from stream and stores them into the buffer pointed to

by s. Reading stops after an EOF or a newline. If a newline is read, it is stored into the buffer. A ’\0’ is

stored after the last character in the buffer.

fputc() writes the character c, cast to an unsigned char, to stream.

fputs() writes the string s to stream, without its terminating null byte ('\0').

putc() is equivalent to fputc() except that it may be implemented as a macro which evaluates stream more

than once.

putchar(c); is equivalent to putc(c, stdout).

Calls to the functions described here can be mixed with each other and with calls to other output functions

from the stdio library for the same output stream.

RETURN VALUE

fgetc(), getc() and getchar() return the character read as an unsigned char cast to an int or EOF on end of

file or error.

fgets() returns s on success, and NULL on error or when end of file occurs while no characters have been

read. fputc(), putc() and putchar() return the character written as an unsigned char cast to an int or EOF

on error.

fputs() returns a nonnegative number on success, or EOF on error.

SEE ALSO

read(2), write(2), ferror(3), fgetwc(3), fgetws(3), fopen(3), fread(3), fseek(3), getline(3), getwchar(3),

scanf(3), ungetwc(3), write(2), ferror(3), fopen(3), fputwc(3), fputws(3), fseek(3), fwrite(3), gets(3),

putwchar(3), scanf(3), unlocked_stdio(3)

SP-Klausur Manual-Auszug 2018-02-21 1

ipv6/socket(7) ipv6/socket(7)

NAME

ipv6, AF_INET6 − Linux IPv6 protocol implementation

SYNOPSIS

#include <sys/socket.h>

#include <netinet/in.h>

tcp6_socket = socket(AF_INET6, SOCK_STREAM, 0);

raw6_socket = socket(AF_INET6, SOCK_RAW, protocol);

udp6_socket = socket(AF_INET6, SOCK_DGRAM, protocol);

DESCRIPTION

Linux 2.2 optionally implements the Internet Protocol, version 6. This man page contains a description of

the IPv6 basic API as implemented by the Linux kernel and glibc 2.1. The interface is based on the BSD

sockets interface; see socket(7).

The IPv6 API aims to be mostly compatible with the ip(7) v4 API. Only differences are described in this

man page.

To bind an AF_INET6 socket to any process the local address should be copied from the in6addr_any vari-

able which has in6_addr type. In static initializations IN6ADDR_ANY_INIT may also be used, which

expands to a constant expression. Both of them are in network order.

IPv4 connections can be handled with the v6 API by using the v4-mapped-on-v6 address type; thus a pro-

gram only needs only to support this API type to support both protocols. This is handled transparently by

the address handling functions in libc.

IPv4 and IPv6 share the local port space. When you get an IPv4 connection or packet to a IPv6 socket its

source address will be mapped to v6 and it will be mapped to v6.

Address Format

struct sockaddr_in6 {

uint16_t sin6_family; /* AF_INET6 */

uint16_t sin6_port; /* port number */

uint32_t sin6_flowinfo; /* IPv6 flow information */

struct in6_addr sin6_addr; /* IPv6 address */

uint32_t sin6_scope_id; /* Scope ID (new in 2.4) */

};

struct in6_addr {

unsigned char s6_addr[16]; /* IPv6 address */

};

sin6_family is always set to AF_INET6; sin6_port is the protocol port (see sin_port in ip(7)); sin6_flowinfo

is the IPv6 flow identifier; sin6_addr is the 128-bit IPv6 address. sin6_scope_id is an ID of depending of

on the scope of the address. It is new in Linux 2.4. Linux only supports it for link scope addresses, in that

case sin6_scope_id contains the interface index (see netdevice(7))

RETURN VALUES

−1 is returned if an error occurs. Otherwise the return value is a descriptor referencing the socket.

NOTES

The sockaddr_in6 structure is bigger than the generic sockaddr. Programs that assume that all address

types can be stored safely in a struct sockaddr need to be changed to use struct sockaddr_storage for that

instead.

SEE ALSO

cmsg(3), ip(7)

SP-Klausur Manual-Auszug 2018-02-21 1

listen(2) listen(2)

NAME

listen − listen for connections on a socket

SYNOPSIS

#include <sys/types.h> /* See NOTES */

#include <sys/socket.h>

int listen(int sockfd , int backlog);

DESCRIPTION

listen() marks the socket referred to by sockfd as a passive socket, that is, as a socket that will be used to

accept incoming connection requests using accept(2).

The sockfd argument is a file descriptor that refers to a socket of type SOCK_STREAM or SOCK_SEQ-

PA CKET.

The backlog argument defines the maximum length to which the queue of pending connections for sockfd

may grow. If a connection request arrives when the queue is full, the client may receive an error with an

indication of ECONNREFUSED or, if the underlying protocol supports retransmission, the request may be

ignored so that a later reattempt at connection succeeds.

RETURN VALUE

On success, zero is returned. On error, −1 is returned, and errno is set appropriately.

ERRORS

EADDRINUSE

Another socket is already listening on the same port.

EBADF

The argument sockfd is not a valid descriptor.

ENOTSOCK

The argument sockfd is not a socket.

NOTES

To accept connections, the following steps are performed:

1. A socket is created with socket(2).

2. The socket is bound to a local address using bind(2), so that other sockets may be connect(2)ed

to it.

3. A willingness to accept incoming connections and a queue limit for incoming connections are

specified with listen().

4. Connections are accepted with accept(2).

If the backlog argument is greater than the value in /proc/sys/net/core/somaxconn, then it is silently trun-

cated to that value; the default value in this file is 128.

EXAMPLE

See bind(2).

SEE ALSO

accept(2), bind(2), connect(2), socket(2), socket(7)

SP-Klausur Manual-Auszug 2018-02-21 1

pthread_create/pthread_exit(3) pthread_create/pthread_exit(3)

NAME

pthread_create − create a new thread / pthread_exit − terminate the calling thread

SYNOPSIS

#include <pthread.h>

int pthread_create(pthread_t * thread , pthread_attr_t * attr, void * (*start_routine)(void *), void *

arg);

void pthread_exit(void *retval);

DESCRIPTION

pthread_create creates a new thread of control that executes concurrently with the calling thread. The new

thread applies the function start_routine passing it arg as first argument. The new thread terminates either

explicitly, by calling pthread_exit(3), or implicitly, by returning from the start_routine function. The latter

case is equivalent to calling pthread_exit(3) with the result returned by start_routine as exit code.

The attr argument specifies thread attributes to be applied to the new thread. See pthread_attr_init(3) for a

complete list of thread attributes. The attr argument can also be NULL, in which case default attributes are

used: the created thread is joinable (not detached) and has default (non real-time) scheduling policy.

pthread_exit terminates the execution of the calling thread. All cleanup handlers that have been set for the

calling thread with pthread_cleanup_push(3) are executed in reverse order (the most recently pushed han-

dler is executed first). Finalization functions for thread-specific data are then called for all keys that have

non- NULL values associated with them in the calling thread (see pthread_key_create(3)). Finally, exe-

cution of the calling thread is stopped.

The retval argument is the return value of the thread. It can be consulted from another thread using

pthread_join(3).

RETURN VALUE

On success, the identifier of the newly created thread is stored in the location pointed by the thread argu-

ment, and a 0 is returned. On error, a non-zero error code is returned.

The pthread_exit function never returns.

ERRORS

EAGAIN

not enough system resources to create a process for the new thread.

EAGAIN

more than PTHREAD_THREADS_MAX threads are already active.

SEE ALSO

pthread_join(3), pthread_detach(3), pthread_attr_init(3).

SP-Klausur Manual-Auszug 2018-02-21 1

scanf(3) scanf(3)

NAME

scanf, fscanf, sscanf − input format conversion

SYNOPSIS

#include <stdio.h>

int scanf(const char * format, ...);

int fscanf(FILE *stream, const char * format, ...);

int sscanf(const char *str, const char * format, ...);

DESCRIPTION

The scanf() family of functions scans input according to format as described below. This format may con-

tain conversion specifications; the results from such conversions, if any, are stored in the locations pointed

to by the pointer arguments that follow format. Each pointer argument must be of a type that is appropriate

for the value returned by the corresponding conversion specification.

If the number of conversion specifications in format exceeds the number of pointer arguments, the results

are undefined. If the number of pointer arguments exceeds the number of conversion specifications, then

the excess pointer arguments are evaluated, but are otherwise ignored.

The scanf() function reads input from the standard input stream stdin, fscanf() reads input from the stream

pointer stream, and sscanf() reads its input from the character string pointed to by str.

The format string consists of a sequence of directives which describe how to process the sequence of input

characters. If processing of a directive fails, no further input is read, and scanf() returns. A "failure" can be

either of the following: input failure, meaning that input characters were unavailable, or matching failure,

meaning that the input was inappropriate (see below).

A directive is one of the following:

• A sequence of white-space characters (space, tab, newline, etc.; see isspace(3)). This directive

matches any amount of white space, including none, in the input.

• An ordinary character (i.e., one other than white space or '%'). This character must exactly match

the next character of input.

• A conversion specification, which commences with a '%' (percent) character. A sequence of char-

acters from the input is converted according to this specification, and the result is placed in the cor-

responding pointer argument. If the next item of input does not match the conversion specifica-

tion, the conversion fails—this is a matching failure.

Each conversion specification in format begins with either the character '%' or the character sequence

"%n$" (see below for the distinction) followed by:

• An optional '*' assignment-suppression character: scanf() reads input as directed by the conversion

specification, but discards the input. No corresponding pointer argument is required, and this

specification is not included in the count of successful assignments returned by scanf().

• For decimal conversions, an optional quote character ('). This specifies that the input number may

include thousands’ separators as defined by the LC_NUMERIC category of the current locale.

(See setlocale(3).) The quote character may precede or follow the '*' assignment-suppression

character.

• An optional decimal integer which specifies the maximum field width. Reading of characters stops

either when this maximum is reached or when a nonmatching character is found, whichever hap-

pens first. Most conversions discard initial white space characters (the exceptions are noted

below), and these discarded characters don’t count toward the maximum field width. String input

conversions store a terminating null byte ('\0') to mark the end of the input; the maximum field

width does not include this terminator.

• An optional type modifier character. For example, the l type modifier is used with integer conver-

sions such as %d to specify that the corresponding pointer argument refers to a long int rather

than a pointer to an int.

SP-Klausur Manual-Auszug 2018-02-21 1

scanf(3) scanf(3)

• A conversion specifier that specifies the type of input conversion to be performed.

The conversion specifications in format are of two forms, either beginning with '%' or beginning with

"%n$". The two forms should not be mixed in the same format string, except that a string containing

"%n$" specifications can include %% and %*. If format contains '%' specifications, then these corre-

spond in order with successive pointer arguments. In the "%n$" form (which is specified in

POSIX.1-2001, but not C99), n is a decimal integer that specifies that the converted input should be placed

in the location referred to by the n-th pointer argument following format.

Conversions

The following type modifier characters can appear in a conversion specification:

l Indicates either that the conversion will be one of d, i, o, u, x, X, or n and the next pointer is a

pointer to a long int or unsigned long int (rather than int), or that the conversion will be one of e, f,

or g and the next pointer is a pointer to double (rather than float). Specifying two l characters is

equivalent to L. If used with %c or %s, the corresponding parameter is considered as a pointer to

a wide character or wide-character string respectively.

L Indicates that the conversion will be either e, f, or g and the next pointer is a pointer to long double

or the conversion will be d, i, o, u, or x and the next pointer is a pointer to long long.

The following conversion specifiers are available:

% Matches a literal '%'. That is, %% in the format string matches a single input '%' character. No

conversion is done (but initial white space characters are discarded), and assignment does not

occur.

d Matches an optionally signed decimal integer; the next pointer must be a pointer to int.

i Matches an optionally signed integer; the next pointer must be a pointer to int. The integer is read

in base 16 if it begins with 0x or 0X , in base 8 if it begins with 0, and in base 10 otherwise. Only

characters that correspond to the base are used.

u Matches an unsigned decimal integer; the next pointer must be a pointer to unsigned int.

x Matches an unsigned hexadecimal integer; the next pointer must be a pointer to unsigned int.

f Matches an optionally signed floating-point number; the next pointer must be a pointer to float.

s Matches a sequence of non-white-space characters; the next pointer must be a pointer to the initial

element of a character array that is long enough to hold the input sequence and the terminating

null byte ('\0'), which is added automatically. The input string stops at white space or at the maxi-

mum field width, whichever occurs first.

c Matches a sequence of characters whose length is specified by the maximum field width (default

1); the next pointer must be a pointer to char, and there must be enough room for all the characters

(no terminating null byte is added). The usual skip of leading white space is suppressed. To skip

white space first, use an explicit space in the format.

p Matches a pointer value (as printed by %p in printf(3); the next pointer must be a pointer to a

pointer to void .

RETURN VALUE

On success, these functions return the number of input items successfully matched and assigned;

this can be fewer than provided for, or even zero, in the event of an early matching failure.

The value EOF is returned if the end of input is reached before either the first successful conver-

sion or a matching failure occurs. EOF is also returned if a read error occurs, in which case the

error indicator for the stream (see ferror(3)) is set, and errno is set to indicate the error.

SP-Klausur Manual-Auszug 2018-02-21 2

sigaction(2) sigaction(2)

NAME

sigaction − POSIX signal handling functions.

SYNOPSIS

#include <signal.h>

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

DESCRIPTION

The sigaction system call is used to change the action taken by a process on receipt of a specific signal.

signum specifies the signal and can be any valid signal except SIGKILL and SIGSTOP.

If act is non−null, the new action for signal signum is installed from act. If oldact is non−null, the previous

action is saved in oldact.

The sigaction structure is defined as something like

struct sigaction {

void (*sa_handler)(int);

void (*sa_sigaction)(int, siginfo_t *, void *);

sigset_t sa_mask;

int sa_flags;

void (*sa_restorer)(void);

}

On some architectures a union is involved - do not assign to both sa_handler and sa_sigaction.

The sa_restorer element is obsolete and should not be used. POSIX does not specify a sa_restorer ele-

ment.

sa_handler specifies the action to be associated with signum and may be SIG_DFL for the default action,

SIG_IGN to ignore this signal, or a pointer to a signal handling function.

sa_mask gives a mask of signals which should be blocked during execution of the signal handler. In addi-

tion, the signal which triggered the handler will be blocked, unless the SA_NODEFER or SA_NOMASK

flags are used.

sa_flags specifies a set of flags which modify the behaviour of the signal handling process. It is formed by

the bitwise OR of zero or more of the following:

SA_NOCLDSTOP

If signum is SIGCHLD, do not receive notification when child processes stop (i.e., when

child processes receive one of SIGSTOP, SIGTSTP, SIGTTIN or SIGTTOU).

SA_RESTART

Provide behaviour compatible with BSD signal semantics by making certain system calls

restartable across signals.

RETURN VALUES

sigaction returns 0 on success and -1 on error.

ERRORS

EINVAL

An invalid signal was specified. This will also be generated if an attempt is made to change the

action for SIGKILL or SIGSTOP, which cannot be caught.

SEE ALSO

kill(1), kill(2), killpg(2), pause(2), sigsetops(3),

SP-Klausur Manual-Auszug 2018-02-21 1

sigsetops(3C) sigsetops(3C)

NAME

sigsetops, sigemptyset, sigfillset, sigaddset, sigdelset, sigismember − manipulate sets of signals

SYNOPSIS

#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signo);

int sigdelset(sigset_t *set, int signo);

int sigismember(sigset_t *set, int signo);

DESCRIPTION

These functions manipulate sigset_t data types, representing the set of signals supported by the implemen-

tation.

sigemptyset() initializes the set pointed to by set to exclude all signals defined by the system.

sigfillset() initializes the set pointed to by set to include all signals defined by the system.

sigaddset() adds the individual signal specified by the value of signo to the set pointed to by set.

sigdelset() deletes the individual signal specified by the value of signo from the set pointed to by set.

sigismember() checks whether the signal specified by the value of signo is a member of the set pointed to

by set.

Any object of type sigset_t must be initialized by applying either sigemptyset() or sigfillset() before

applying any other operation.

RETURN VALUES

Upon successful completion, the sigismember() function returns a value of one if the specified signal is a

member of the specified set, or a value of 0 if it is not. Upon successful completion, the other functions

return a value of 0. Otherwise a value of −1 is returned and errno is set to indicate the error.

ERRORS

sigaddset(), sigdelset(), and sigismember() will fail if the following is true:

EINVAL The value of the signo argument is not a valid signal number.

sigfillset() will fail if the following is true:

EFAULT The set argument specifies an invalid address.

SEE ALSO

sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2), attributes(5), signal(5)

SP-Klausur Manual-Auszug 2018-02-21 1

strcmp(3) strcmp(3)

NAME

strcmp, strncmp − compare two strings

SYNOPSIS

#include <string.h>

int strcmp(const char *s1, const char *s2);

int strncmp(const char *s1, const char *s2, size_t n);

DESCRIPTION

The strcmp() function compares the two strings s1 and s2. It returns an integer less than, equal to, or

greater than zero if s1 is found, respectively, to be less than, to match, or be greater than s2.

The strncmp() function is similar, except it only compares the first (at most) n characters of s1 and s2.

RETURN VALUE

The strcmp() and strncmp() functions return an integer less than, equal to, or greater than zero if s1 (or the

first n bytes thereof) is found, respectively, to be less than, to match, or be greater than s2.

CONFORMING TO

SVr4, 4.3BSD, C89, C99.

SEE ALSO

bcmp(3), memcmp(3), strcasecmp(3), strcoll(3), strncasecmp(3), wcscmp(3), wcsncmp(3)

SP-Klausur Manual-Auszug 2018-02-21 1

__sync_fetch_and_add/__sync_fetch_and_sub(3) __sync_fetch_and_add/__sync_fetch_and_sub(3)

NAME

__sync_fetch_and_add − Atomic addition/__sync_fetch_and_sub − Atomic subtraction

SYNOPSIS

type __sync_fetch_and_add(type *ptr, type value,...)

type __sync_fetch_and_sub(type *ptr, type value,...)

DESCRIPTION __sync_fetch_and_add/__sync_fetch_and_sub

These GCC-built-in functions perform the operation suggested by the name, and return the value that had

previously been in memory. That is, operations on integer operands have the following semantics:

{ tmp = *ptr; *ptr += value; return tmp; }

{ tmp = *ptr; *ptr -= value; return tmp; }

Both __sync_fetch_and_add() and __sync_fetch_and_sub() are overloaded such that they work on multi-

ple types.

In most cases, these builtins are considered a full barrier. That is, no memory operand will be moved across

the operation, either forward or backward. Further, instructions will be issued as necessary to prevent the

processor from speculating loads across the operation and from queuing stores after the operation.

RETURN VALUE

The value that had previously been in memory pointed to by ptr.

SP-Klausur Manual-Auszug 2018-02-21 1

triangle(3) triangle(3)

NAME

countPoints − count the number of integer coordinates on the boundary of and inside the triangle

SYNOPSIS

#include ’’triangle.h’’

void countPoints(const struct triangle *tri, int* boundary, int* interior);

DESCRIPTION

Given a triangle tri with all corners on integer coordinates (see struct coordinate), countPoints() counts

the number of points (on integer coordinates) on the boundary of the triangle and the number of points

inside the triangle.

The parameters boundary and interior are output parameters that receive the number of points found on the

boundary and inside the triangle, respectively.

The struct coordinate represents a two-dimensional coordinate in the Cartesian coordinate system. The

struct triangle stores the three coordinates that make up a triangle.

struct coordinate {

int x;

int y;

};

struct triangle {

struct coordinate point[3];

};

RETURN VALUES

The countPoints() function returns no value.

SP-Klausur Manual-Auszug 2018-02-21 1

