accept(2) accept(2)

NAME
accept — accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, int * addrler);

DESCRIPTION
The agumentsis a socket that has been created witbke(3N) and bound to an address witind (3N),
and that is listening for connections after a call#®n(3N). Theaccept()function extracts the first con-
nection on the queue of pending connections, createw aocket with the properties of and allocates a
new file descriptarns, for the sockt. If no pending connections are present on the queue and the socket is
not marked as non-blockingiccept() blocks the caller until a connection is present. If the socket is
marked as non-blocking and no pending connections are present on theapoepéd()returns an error as
described belw. The accept()function uses th@etconfig4) file to determine th6 TREAMS device file
name associated with This is the device on which the connect indication will be accepted. The accepted
socket,ns, is used to read and write data to and from the socket that connecigdk is not used to accept
more connections. The original sockstremains open for accepting further connections.

The agumentaddr is a result parameter that is filled in with the address of the connecting entity as it is
known to the communications layeThe exact format of thaddr parameter is determined by the domain
in which the communication occurs.

The agumentaddrlenis a \alue-result parametetnitially, it contains the amount of space pointed to by
addr; on return it contains the length in bytes of the address returned.

Theaccept()function is used with connection-based socket types, currentlyS®ithk_STREAM.

It is possible taselec{3C) orpoll(2) a sockt for the purpose of accept()by selecting or polling it for a

read. Hovever, this will only indicate when a connect indication is pending; it is still necessary to call
accept()

RETURN VALUES
Theaccept()function returns-1 on error If it succeeds, it returns a nongaive integer that is a descrip-
tor for the accepted socket.

ERRORS
accept()will fail i
EBADF The descriptor is ielid.
EINTR The accept attempt was interrupted by thevesliof a signal.
EMFILE The per-process descriptor table is fu
ENODEV The protocol &mily and type corresponding saould not be found in theetcon-
fig file.
ENOMEM There was insufficient user memomgitable to complete the operation.
EPROTO A protocol error has occurred; for example, 8®REAMS protocol stack has not
been zed or the connection has already been released.
EWOULDBLOCK The socket is marked as non-blocking and no connections are present to be
accepted.
SEE ALSO

poll(2), bind(3N), connec{3N), listen(3N), selec{3C), socke(3N), netconfig4), attributes(5), socke(5)

SP-Klausur Manual-Auszug 2017-02-22 1

bind(2) bind(2)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int bind(int s, const struct sockaddr *name int nameley;

DESCRIPTION
bind() assigns a name to an unnamed stckVhena socket is created witlsocke(3N), it exists in a name
space (address family) but has no name assighiedl() requests that the name pointed toriamebe
assigned to the socket.

RETURN VALUES
If the bind is successfullis returned.A return \alue of-1 indicates an errowhich is further specified in
the globalerrno.

ERRORS
Thebind() call will f

f:

EACCES The requested address is protected and the current user has inadequate permission
to access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVA IL The specified address is netitable on the local machine.

EBADF sis not a valid descriptor.

EINVAL nameleris not the size of a valid address for the specified address family.

EINVAL The socket is already bound to an address.

ENOSR There were insufficier8TREAMSresources for the operation to complete.

ENOTSOCK sis a descriptor for a file, not a socket.

The following errors are specific to binding names inuURe&X domain:

EACCES Search permission is denied for a component of the path prefix of the pathname in
name

EIO An 1/O error occurred while making the directory entry or allocating the inode.

EISDIR A null pathname was specified.

ELOOP Too mary symbolic links were encountered in translating the pathnamarime

ENOENT A component of the path prefix of the pathnameamedoes not exist.

ENOTDIR A component of the path prefix of the pathnameameis not a directory.

EROFS The inode would reside on a read-only file system.

SEE ALSO

unlink (2), socke(3N), attributes(5), socke(5)
NOTES

Binding a name in th&NIX domain creates a socket in the file system that must be deleted by the caller

when it is no longer needed (usinglink (2)).
The rules used in name binding vary between communication domains.

SP-Klausur Manual-Auszug 2017-02-22 1

chdir(2) chdir(2)

NAME
chdir, fchdir — change working directory

SYNOPSIS
#include <unistd.h>

int chdir(const char * path);
int fchdir(int fd);

DESCRIPTION
chdir() changes the current working directory of the calling process to the directory speqifiil in
fchdir () is identical tachdir(); the only difference is that the directory isai as an pen file descriptor.

RETURN VALUE
On success, zero is returned. On errdris returned, an@rrnois set appropriately.

ERRORS
Depending on the file system, other errors can be returned. The more general eotwig fpare listed
below:

EACCES
Search permission is denied for one of the componemiathf (See alsgath_resolution(7).)

EFAULT
pathpoints outside your accessible address space.

EIO An 1/O error occurred.

ELOOP
Too mary symbolic links were encountered in resolvipath
ENAMETOOLONG
pathis too long.
ENOENT
The file does not exist.
ENOMEM
Insufficient kernel memory wawalable.
ENOTDIR

A component opathis not a directory.
The general errors fdchdir () are listed below:

EACCES
Search permission was denied on the directory opéd.on
EBADF
fdis not a valid file descriptor.
SEE ALSO

chroot(2), getcwd3), path_resolution(7)

SP-Klausur Manual-Auszug 2017-02-22 1

feof/ferror/fileno(3) feof/ferror/fileno(3)

NAME
clearerr feof, ferror fileno — check and reset stream status

SYNOPSIS
#include <stdio.h>

void clearerr(FILE * strean);
t feof(FILE * strean);

t ferror(FILE * strean);

t fileno(FILE * strean);

DESCRIPTION
The functionclearerr() clears the end-of-file and error indicators for the stream pointedstioeaym

The functionfeof() tests the end-of-file indicator for the stream pointed tetlam returning non-zero if
itis set. The end-of-file indicator can only be cleared by the functeamerr().

The functionferror () tests the error indicator for the stream pointed tett®am returning non-zero if it is
set. Theerror indicator can only be reset by tearerr() function.

The functiorfileno() examines the argumestreamand returns its integer descriptor.
For non-locking counterparts, sealocked_stdiq(3).

ERRORS
These functions should not fail and do not set tktereal \ariable errno. (However, in casefileno()
detects that its argument is not a valid stream, it must return -1 aewirseto EBADF.)

CONFORMING TO
The functionslearerr(), feof(), andferror () conform to C89 and C99.

SEE ALSO
open(2), fdopen(3), stdio(3), unlocked_stdiq3)

SP-Klausur Manual-Auszug 2017-02-22 1

fopen/fdopenf/fileno(3) fopen/fdopenf/fileno(3)

NAME
fopen, fdopen, fileno - stream open functions

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * path, const char *mode);
FILE *fdopen(int fildes const char *mode);
int fileno(FILE * strean);

DESCRIPTION
Thefopen function opens the file whose name is the string pointed mathyand associates a stream with
it.

The agumentmodepoints to a string lignning with one of the following sequences (Additional characters
may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.
r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned agiheitg
of the file.

g. The file is created if it does rist,eotherwise it is truncatedlhe
ned at the beginning of the file.

a Open for appending (writing at end of fileJhe file is created if it does natist. Thestream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it doegistot e
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descrifithes The modeof the stream
(one of the alues ", wl, tw, Mat, "a+") must be compatible with the mode of the file descri
The file position indicator of the mestream is set to that belongingfitsles and the error and end-of-file
indicators are clearedModes "w" or "w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream creatdddyyenis closed. The result of applyiridopento a
shared memory object is undefined.

The functiorfileno() examines the argumestreamand returns its integer descriptor.

RETURN VALUE
Upon successful completioiopen, fdopen and freopen return aFILE pointer Otherwise,NULL is
returned and the global variatg@ernois set to indicate the error.

ERRORS
EINVAL
Themodeprovided tofopen, fdopen, or freopenwas invdid.

Thefopen, fdopen andfreopen functions may also fail and setrno for ary of the errors specified for the
routinemalloc(3).

Thefopen function may also fail and setrno for ary of the errors specified for the routiopen(2).

Thefdopen function may also fail and setrno for ary of the errors specified for the routifentl (2).

SEE ALSO
open(2), fclosg3), fileno(3)

SP-Klausur Manual-Auszug 2017-02-22 1

getc/fgets/putc/fputs(3) getc/fgets/putc/fputs(3)

NAME

fgetc, fgets, getc, getchdputc, fputs, putc, putchar input and output of characters and strings

SYNOPSIS

#include <stdio.h>

int fgetc(FILE * strean);

char *fgets(char *s, int size FILE * strean);
t getc(FILE * strean);

t getchar(void);

int fputc(int c, FILE * strean);

int fputs(const char *s, FILE * strean);

int putc(int ¢, FILE * strean);

int putchar(int c);

DESCRIPTION

fgetq() reads the next character frastreamand returns it as amnsigned bar cast to arint, or EOF on
end of file or error.

getd) is equvalent tofgeto() except that it may be implemented as a macro whigluaesstreammore
than once.

getchan) is equvaent togetc(stdin).

fgetq) reads in at most one less tlarecharacters fronstreamand stores them into theiffer pointed to
by s. Reading stops after &8OF or a nevline. If a rewline is read, it is stored into theiffer. A \0’ is
stored after the last character in the buffer.

fputc() writes the charactey, cast to arunsigned charto stream
fputs() writes the string to stream without its terminating null byte (\0").

putc() is equvalent tofputc() except that it may be implemented as a macro whieluatesstreammore
than once.

putchar(c); is equvalent toputc(c, stdou).

Calls to the functions described here can beethiwith each other and with calls to other output functions
from thestdiolibrary for the same output stream.

RETURN VALUE

fget), getd) andgetchan() return the character read aswansigned har cast to arint or EOF on end of
file or error.

fgety) returnss on success, and NULL on error or when end of file occurs while no charaaterkeka
read. fputc(), putc() andputchar() return the character written as amsigned bar cast to annt or EOF
on error.

fputs() returns a nonmgative rumber on success, BOF on error.

SEE ALSO

read(2), write (2), ferror (3), fgetwc(3), fgetws(3), fopen(3), fread(3), fseek3), getline(3), getwchar(3),
scanf(3), ungetwq(3), write (2), ferror (3), fopen(3), fputwc(3), fputws(3), fseek3), fwrite (3), gety3),
putwchar(3), scan{3), unlocked_stdiq3)

SP-Klausur Manual-Auszug 2017-02-22 1

socket(2) / ipv6(7) socket(2) / ipv6(7) listen(2) listen(2)

NAME NAME
ipv6, PF_INET6 — Linux IPv6 protocol implementation listen — listen for connections on a socket
SYNOPSIS SYNOPSIS
#include <sys/socket.h> #include <sys/types.h> /* See NOTES */
#include <netinet/in.h> #include <sys/socket.h>
tcp6_soket = socket(PF_INET6, SOCK_STREAM, 0); int listen(int sockfd int backlog;
raw6_so&et = socket(PF_INET6, SOCK_RAN, protocol); DESCRIPTION
udp6_soket = socket(PF_INET6, SOCK_DGRAM, protocol); listen() marks the socket referred to bgckfdas a passe ocket, that is, as a socket that will be used to
DESCRIPTION accept incoming connection requests usiogep(2).
Linux 2.2 optionally implements the Internet Protoc@sion 6. This man page contains a description of
the IPv6 basic API as implemented by the Linux kernel and glibc 2.1. The interface is based on the BSD The sockfdamgument is a file descriptor that refers to a socket of 8pEK_STREAM or SOCK_SEQ-
sockets interface; seecke(7). PACKET .
m_.:_%_ __u_uMme_u_ aims to be mostly compatible with ih€7) v4 API. Only differences are described in this The backlogagument defines the maximum length to which the queue of pending connectisnskiok
may grav. If a connection request aves when the queue is full, the client may reeei error with an
To bind anAF_INET6 soclet to ary process the local address should be copied frormézidr_anyvari- indication ofECONNREFUSED or, if the underlying protocol supports retransmission, the request may be
able which hasn6_addrtype. Instatic initializationssN6ADDR_ANY_INIT may also be used, which ignored so that a later reattempt at connection succeeds.
expands to a constarression. Bottof them are in network order.
RETURN VALUE
IPv4 connections can be handled with the v6 API by using the v4-mapped-on-v6 address type; thus a pro- On success, zero is returned. On errdris eturned, an@rrnois set appropriately.
gram only needs only to support this API type to support both protocols. This is handled transparently by
the address handling functions in libc. ERRORS
EADDRINUSE
IPv4 and IPv6 share the local port spa¢hen you get an IPv4 connection or packet to a IPv6 socket its Another socket is already listening on the same port.
source address will be mapped to v6 and it be mapped to v6. EBADF
Address _uwzswz addr in6 The argumensockfdis not a valid descriptor.
struct sockaddr_in
uintl6 t sinG Amily; /¥ AF_INET6 %/ ENOTSOCK :
uint16_t sin6_port; /* port number */ The argumensockfdis not a socket.
uint32_t sin6_flainfo; /* IPv6 flow information */ NOTES
struct in6_addr sin6_addr; /* IPv6 address */ To accept connections, the following steps are performed:
uint32_t sin6_scope_id* Scope ID (nev in 2.4) */ 1. Asocket is created withocke(2).
b 2. Thesoclet is bound to a local address ushbigd(2), so that other sockets may dc@mnnec(2)ed
struct in6_addr { toit.
unsigned chars6_addr[16]; /1Pv6 address */ 3. Awillingness to accept incoming connections and a queue limit for incoming connections ar
h specified withisten().

sin6_familyis alvays set toAF_INETS; sin6_portis the protocol port (sesin_portin ip(7)); siné_flowinfo 4. Connectionsre accepted witaccep(2).

is the IPv6 flov identifier;sin6_addris the 128-bit IPv6 addressin6_scope_ids an ID of depending of

on the scope of the address. It isvrie Linux 2.4. Linux only supports it for link scope addresses, in that If the backlogargument is greater than the value/fmoc/sys/net/core/somaxcarthen it is silently trun-
casesin6_scope_idontains the interface indéseenetdevicg7)) cated to that value; the default value in this file is 128.
RETURN VALUES EXAMPLE
-1is returned if an error occurs. Otherwise the return value is a descriptor referencing the socket. Seebind(2).
NOTES SEE ALSO
The sockaddr_in6structure is bigger than the genesieckaddr Programs that assume that all address accep(2), bind(2), connec(2), socke(2), socke(7)
types can be stored safely irstauct sokaddrneed to be changed to usteuct sokaddr_stoagefor that
instead.
SEE ALSO

cmsg3),ip(7)

SP-Klausur Manual-Auszug 2017-02-22 1 SP-Klausur Manual-Auszug 2017-02-22 1

opendir/readdir(3) opendir/readdir(3)

NAME
opendir — open a directory / readdir — read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>
DIR *opendir(const char *name);

struct dirent *readdir(DIR * dir);
int readdir_r(DIR * dirp, struct dirent * entry, struct dirent ** result);

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the directong and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to lajr. It returns NULL on reaching the end-of-file or if an error occurred. It is
safe to useeaddir() inside threads if the pointers passediagire created by distinct calls apendir().

DESCRIPTION readdir_r
Thereaddir_r() function initializes the structure referenced egtry and storesa pointer to this structure
in result On successful return, the pointer returned@ssult will have the samevalue as the agument
entry. Upon reaching the end of the directory stream, this pointer wid the value NULL.

The data returned bgeaddir() is overwritten by subsequent calls teaddir() for the same directory
stream.

Thedirentstructure is defined as follows:

struct dirent {

long d_ino; [* inode number */
off_t d_of; /* offset to the next dirent */
unsigned shord_reclen; /Mength of this record */
unsigned chard_type; [*type of file */
char d_name[256]; /* filename */
h
RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

readdir_r() returns Qf successful or an error number to indicate failure.

ERRORS
EACCES
Permission denied.
ENOENT
Directory does not exist, mameis an empty string.
ENOTDIR
nameis not a directory.
SP-Klausur Manual-Auszug 2017-02-22 1

printf(3) printf(3)

NAME

printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf — formatted output wasion
SYNOPSIS

#include <stdio.h>

int printf(const char * format, ...);

tf(FILE * stream const char *format,
t sprintf(char * str, const char *format, ...);
t snprintf(char * str, size_tsize const char *format, ...);

DESCRIPTION
The functions in therintf () family produce output according td@matas described belo The function
printf () writes output tostdout the standard output strearprintf () writes output to the gen output
stream sprintf () andsnprintf (), write to the character strirggr.

The functionsnprintf () writes at mossizebytes (including the trailing null byte (\0)) str.

These functions write the output under the control fifrmat string that specifies mosubsequent gu-
ments (or ayuments accessed via the variable-length argument facilitisslafg(3)) are comerted for
output.

Return value

Upon successful return, these functions return the number of characters printed (not including the tr
"\O' used to end output to strings).

The functionssnprintf () andvsnprintf() do not write more thasizebytes (including the trailing "\0")If

the output was truncated due to this limit then the retahnevis the number of characters (not including
the trailing "\0") which wuld hare been written to the final string if enough space had bealable. Thus,

a return value obizeor more means that the output was truncated.

If an output error is encountered, ayetéve \alue is returned.

Format of the format string
The format string is a character string, beginning and ending in its initial shift statg, ila@ format
string is composed of zero or more direest ordinary characters (n&4), which are copied unchanged to
the output stream; and oansion specifications, each of which results in fetching zero or more subsequent
arguments. Eacleorversion specification is introduced by the charaéterand ends with aonversion
specifier In between there may be (in this order) zero or nflags an gtional minimumfield width an
optionalprecisionand an optiondength modifier

The corversion specifier
A character that specifies the type of wasion to be applied. An example for a gersion specifier is:

o,u, X, X
The unsigned inlargument is coverted to unsigned octab), unsigned decimaluf, or unsigned
hexadecimalX andX) notation.

s The const char *amgument is gpected to be a pointer to an array of character type (pointer to a
string). Characterfrom the array are written up to (but not including) a terminating null byte
(\0"; if a precision is specified, no more than the number specified are written. If a precision is
given, no null byte need be present; if the precision is not specified, or is greater than the size of
the arraythe array must contain a terminating null byte.

SEE ALSO
printf (1), asprintf(3), dprintf (3), scan{3), setlocalé3), wcrtomb(3), wprintf (3), locale(5)

SP-Klausur Manual-Auszug 2017-02-22 1

pthread_create/pthreacit3) pthread_create/pthreadit¢3)

NAME
pthread_create — create awntread / pthread_exit — terminate the calling thread

SYNOPSIS
#include <pthread.h>

int pthr ead_create(pthead_t * thread, pthread_attr_t * attr, void * (* start_routing(void *), void *
arg);

void pthread_exit(void *retval);

DESCRIPTION
pthread_createcreates a e thread of control thatecutes concurrently with the calling thread. Thevne
thread applies the functicstart_routinepassing itarg as first argument. The wethread terminates either
explicitly, by calling pthread_exit(3), or implicitly, by returning from thestart_routinefunction. The latter
case is equalent to callingpthread_exit(3) with the result returned tstart_routineas exit code.

Theattr agument specifies thread attributes to be applied to thehread. Seethread_attr_init (3) for a
complete list of thread attributes. Tatr agument can also RULL , in which case default attributes are
used: the created thread is joinable (not detached) and has default (non real-time) schedyling polic

pthread_exit terminates thexecution of the calling threadAll cleanup handlers that te been set for the
calling thread withpthread_cleanup_puslif3) are &ecuted in reerse order (the most recently pushed han-
dler is executed first). Finalization functions for thread-specific data are then called fayalthat hae
non-NULL values associated with them in the calling thread fgbeead_key_creaté3)). Finally exe-
cution of the calling thread is stopped.

The retval amgument is the return value of the thread. It can be consulted from another thread using
pthread_join(3).

RETURN VALUE
On success, the identifier of thewhg created thread is stored in the location pointed bythteaad argu-
ment, and a O is returned. On er@ron-zero error code is returned.

The pthread_exit function neer returns.

ERRORS
EAGAIN
not enough system resources to create a process fomitibread.

EAGAIN
more tharPTHREAD_THREADS_MAX threads are already acti

AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_join(3), pthread_detach(3), pthread_attr_init (3).

SP-Klausur Manual-Auszug 2017-02-22 1

pthread_detach(3) pthread_detach(3)

NAME
pthread_detach — put a running thread in the detached state
SYNOPSIS
#include <pthread.h>
int pthread_detach(pthreadth);
DESCRIPTION
pthread_detach put the threadh in the detached state. This guarantees that the memory resources con-
sumed byth will be freed immediately wheth terminates. Havever, this prevents other threads from syn-
chronizing on the termination ¢ usingpthread_join.
A thread can be created initially in the detached state, usimtgthehstateattribute topthread_creatg3).
In contrastpthread_detachapplies to threads created in the joinable state, and which need to be put in the
detached state later.
After pthread_detachcompletes, subsequent attempts to perfptimead_join on th will fail. If another
thread is already joining the thretidat the timepthread_detachis called,pthread_detachdoes nothing
and leaesth in the joinable state.
RETURN VALUE
On success, 0 is returned. On ereomn-zero error code is returned.
ERRORS
ESRCH
No thread could be found corresponding to that specifigd by
EINVAL
the threadh is already in the detached state
AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>
SEE ALSO
pthread_creatg3), pthread_join(3), pthread_attr_setdetachstaté3).
SP-Klausur Manual-Auszug 2017-02-22 1

rename(2) rename(2)

NAME
rename - change the name or location of a file

SYNOPSIS
#include <stdio.h>

int rename(const char “oldpath const char *newpatf);

DESCRIPTION
rename() renames a file, nving it between directories if requiredny other hard links to the file (as cre-
ated usindink (2)) are undected. Opeffile descriptors fooldpathare also unaffected.

If newpathalready exists, it will be atomically replaced, so that there is no point at which another process
attempting to accesgewpathwill find it missing.

If oldpathandnewpathare existing hard links referring to the same file, tteerame() does nothing, and
returns a success status.

If newpathexists but the operation fails for some reasename() guarantees to lga an instance ohew-
pathin place.

RETURN VALUE
On success, zero is returned. On errdris eturned, anérrnois set appropriately.
ERRORS

EACCES
Write permission is denied for the directory contaimidpathor newpath or, search permission
is denied for one of the directories in the path prefigldpathor newpath or oldpathis a direc-
tory and does not allowrite permission (needed to update thentry). (Seelsopath_resolu-
tion(7).)

EINVAL
The nev pathname contained a path prefix of the oldnmre generallyan atempt was made to
male a drectory a subdirectory of itself.

EISDIR
newpathis an existing directonput oldpathis not a directory.

ENAMETOOLONG
oldpathor newpathwas too long.

ENOENT
The link named byldpathdoes not exist; oa drectory component inewpathdoes not exist; or
oldpathor newpathis an empty string.

ENOMEM
Insufficient kernel memory wawalable.

CONFORMING TO
renamg(): 4.3BSD, C89, C99, POSIX.1-2001, POSIX.1-2008.

SEE ALSO
mv(1), chmod(2), link (2), symlink(2), unlink (2), path_resolution(7), symlink(7)

SP-Klausur Manual-Auszug 2017-02-22 1

strtok(3) strtok(3)

NAME
strtok, strtok_r — extract tokens from strings

SYNOPSIS
#include <string.h>

char *strtok(char * str, const char *delim);

char *strtok_r(char * str, const char *delim, char ** savept);

DESCRIPTION
Thestrtok () function breaks a string into a sequence of zero or more nonemphsto®rthe first call to
strtok () the string to be parsed should be specifiestin In each subsequent call that should parse the
same stringstr must be NULL.

The delim agument specifies a set of bytes that delimit the tokens in the parsed string. The caller may
specify different strings idelimin successie alls that parse the same string.

Each call tostrtok () returns a pointer to a null-terminated string containing the neghtokhisstring does
not include the delimiting byte. If no more tokens are fostriok () returns NULL.

A sequence of calls tstrtok () that operate on the same string maintains a pointer that determines the point
from which to start searching for the nexteak Thefirst call tostrtok() sets this pointer to point to the

first byte of the string. The start of the next token is determined by scanniragddiw the next nondeli
iter byte instr. If such a byte is found, it is taken as the start of the neentokf no such byte is found,
then there are no more tokens, atdok () returns NULL. (A string that is empty or that contains only
delimiters will thus causstrtok () to return NULL on the first call.)

The end of each token is found by scanning forward until either the next delimiter byte is found or until the
terminating null byte (\0") is encountered. If a delimiter byte is found, iesitten with a null byte to
terminate the current token, astitok () saves a minter to the following byte; that pointer will be used as

the starting point when searching for the nexetokInthis casestrtok() returns a pointer to the start of

the found token.

From the abee description, it follows that a sequence ofoter more contiguous delimiter bytes in the
parsed string is considered to be a single delimatet that delimiter bytes at the start or end of the string
are ignored. Put another way: the tokens returnedttigk () are alvays nonempty strings. Thus, for
example, gven the string &aa;;bbb;, successie alls to strtok() that specify the delimiter string,”
would return the stringsaad' and "bbb', and then a null pointer.

The strtok_r () function is a reentrantevsionstrtok (). Thesaveptrargument is a pointer to @har * vari-

able that is used internally Isyrtok_r () in order to maintain context between sucaessills that parse the
same string. On the first call &irtok_r (), str should point to the string to be parsed, and the value of
saveptris ignored. In subsequent callstr should be NULL, andaveptrshould be unchanged since the
previous call.

Different strings may be parsed concurrently using sequences of cstittoko r () that specify dilerent
saveptrarguments.

RETURN VALUE
strtok () andstrtok_r () return a pointer to the next token, or NULL if there are no more tokens.

ATTRIBUTES
Multithreading (see pthreads(7))
Thestrtok() function is not thread-safe, te&tok_r () function is thread-safe.

SP-Klausur Manual-Auszug 2017-02-22 1

