opendir/readdir(3) opendir/readdir(3)

NAME
opendir — open a directory / readdir — read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>
DIR *opendir(const char *name);

struct dirent *readdir(DIR * dir);
int readdir_r(DIR * dirp, struct dirent * entry, struct dirent ** result);

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the directong and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to lalr. It returns NULL on reaching the end-of-file or if an error occurred.

DESCRIPTION readdir_r
Thereaddir_r() function initializes the structure referenced egtry and storesa pointer to this structure
in result On successful return, the pointer returned@sult will have the samevalue as the agument
entry. Upon reaching the end of the directory stream, this pointer wid the value NULL.

The data returned bgeaddir() is overwritten by subsequent calls teaddir() for the same directory
stream.

Thedirentstructure is defined as follows:

struct dirent {

long d_ino; [* inode number */
off_t d_of; /* offset to the next dirent */
unsigned shord_reclen; /Mength of this record */
unsigned chard_type; [*type of file */
char d_name[256]; /* filename */
h
RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

readdir_r() returns Qf successful or an error number to indicate failure.

ERRORS
EACCES
Permission denied.
ENOENT
Directory does not exist, mameis an empty string.
ENOTDIR
nameis not a directory.
GSP-Klausur Manual-Auszug 2017-02-22 1

feof/ferror/fileno(3) feof/ferror/fileno(3)

NAME
clearerr feof, ferror fileno — check and reset stream status

SYNOPSIS
#include <stdio.h>

void clearerr(FILE * strean);
t feof(FILE * strean);

t ferror(FILE * strean);

t fileno(FILE * strean);

DESCRIPTION
The functionclearerr() clears the end-of-file and error indicators for the stream pointedstioeaym

The functionfeof() tests the end-of-file indicator for the stream pointed tetlgam returning non-zero if
itis set. The end-of-file indicator can only be cleared by the functeamerr().

The functionferror () tests the error indicator for the stream pointed tett®am returning non-zero if it is
set. Theerror indicator can only be reset by tearerr() function.

The functiorfileno() examines the argumestreamand returns its integer descriptor.
For non-locking counterparts, sealocked_stdiq(3).

ERRORS
These functions should noaif and do not set the externariable errno. (However, in casefileno()
detects that its argument is not a valid stream, it must return -1 aewirseto EBADF.)

CONFORMING TO
The functionslearerr(), feof(), andferror () conform to C89 and C99.

SEE ALSO
open(2), fdopen(3), stdio(3), unlocked_stdiq3)

GSP-Klausur Manual-Auszug 2017-02-22 1

fopen/fdopenf/fileno(3) fopen/fdopenf/fileno(3)

NAME
fopen, fdopen, fileno - stream open functions

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * path, const char *mode);
FILE *fdopen(int fildes const char *mode);
int fileno(FILE * strean);

DESCRIPTION
Thefopen function opens the file whose name is the string pointed fathyand associates a stream with
it.

The agumentmodepoints to a string beginning with one of the fallng sequences (Additional characters
may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.

r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned agiheitg
of the file.

w+ Open for reading and writingThe file is created if it does not exist, otherwise it is truncatéut
stream is positioned at the beginning of the file.

a Open for appending (writing at end of file). The file is created if it doesxigit erhestream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it doegistot e

The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descrifithes The modeof the stream
(one of the alues ", wl tw, Mat, "a+") must be compatible with the mode of the file descri
The file position indicator of the mestream is set to that belongingfitsles and the error and end-of-file
indicators are cleared. Modes "w" or "w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream creatdddyyenis closed. The result of applyiridopento a
shared memory object is undefined.

The functiorfileno() examines the argumestreamand returns its integer descriptor.

RETURN VALUE
Upon successful completioiopen, fdopen and freopen return aFILE pointer Otherwise,NULL is
returned and the global variatdernois set to indicate the error.
ERRORS
EINVAL
Themodeprovided tofopen, fdopen, or freopenwas invdid.

Thefopen, fdopen andfreopen functions may also fail and setrno for ary of the errors specified for the
routinemalloc(3).

Thefopen function may also fail and setrno for ary of the errors spe

ed for the routiopen(2).
Thefdopen function may also fail and setrno for ary of the errors specified for the routifentl (2).

SEE ALSO
open(2), fclosg3), fileno(3)

GSP-Klausur Manual-Auszug 2017-02-22 1

fgets(3) fgets(3)

NAME
gets, fgets — get a string from a stream
fputs, puts — output of strings
SYNOPSIS
#include <stdio.h>

char *gets(char *s);
char *fgets(char *s, int n, FILE *strean);
int fputs(const char *s, FILE * strean);
int puts(const char *s);
DESCRIPTION gets/fgets
The gets() function reads characters from the standard input streaninfse€3)), stdin, into the array

pointed to bys, until a nevline character is read or an end-of-file condition is encountered. Timae
character is discarded and the string is terminated with a null character.

The fgets() function reads characters from thigeaminto the array pointed to bg; until n—1 characters
are read, or a newline character is read and transferszdit@an ed-of-file condition is encounteredhe
string is then terminated with a null character.

When usinggets() if the length of an input line exceeds the sizs, dfideterminate behavior may result.
For this reason, it is strongly recommended tets()be avoided in fvar of fgets()

RETURN VALUES
If end-of; is encountered and no charactersehaen read, no characters are transferresiaiod a null
pointer is returned. If a read error occurs, such as trying to use these functions on a file that has not been
opened for reading, a null pointer is returned and the error indicator for the stream is set. If end-of-file is
encountered, theOF indicator for the stream is set. Otherwssis returned.

ERRORS
Thegets()andfgets()functions will f

if data needs to be read and:

EOVERFLOW The file is a regular file and an attempt was made to read ayandéhe offset maxi-
mum associated with the correspondstigam

DESCRIPTION puts/fputs
fputs() writes the string to stream without its trailing’\0’ .

puts() writes the string and a trailing newline tetdout

Calls to the functions described here can beethirith each other and with calls to other output functions
from thestdio library for the same output stream.

RETURN VALUE
puts() andfputs() return a non - rggtive rumber on success, BOF on error.

GSP-Klausur Manual-Auszug 2017-02-22 1

pthread_create/pthreacit3) pthread_create/pthreadit¢3)

NAME
pthread_create — create awntread / pthread_exit — terminate the calling thread

SYNOPSIS
#include <pthread.h>
int pthr ead_create(pthead_t * thread, pthread_attr_t * attr, void * (* start_routing(void *), void *
arg);
void pthread_exit(void *retval);

DESCRIPTION
pthread_createcreates a e thread of control thatecutes concurrently with the calling thread. Thevne
thread applies the functicstart_routinepassing itarg as first argument. The wethread terminates either
explicitly, by calling pthread_exit(3), or implicitly, by returning from thestart_routinefunction. The latter
case is equalent to callingpthread_exit(3) with the result returned tstart_routineas exit code.
Theattr agument specifies thread attributes to be applied to thehread. Seethread_attr_init (3) for a
complete list of thread attributes. Tatr agument can also HeULL , in which case default attributes are
used: the created thread is joinable (not detached) and has default (non real-time) schedyling polic
pthread_exit terminates thexecution of the calling threadAll cleanup handlers that te been set for the
calling thread withpthread_cleanup_puslif3) are &ecuted in reerse order (the most recently pushed han-
dler is executed first). Finalization functions for thread-specific data are then called fayalthiat hae
non-NULL values associated with them in the calling thread fgbeead_key_creaté3)). Finally exe-
cution of the calling thread is stopped.
The retval amgument is the return value of the thread. It can be consulted from another thread using
pthread_join(3).

RETURN VALUE
On success, the identifier of thewhg created thread is stored in the location pointed bythteaad argu-
ment, and a O is returned. On er@ron-zero error code is returned.
The pthread_exit function neer returns.

ERRORS
EAGAIN

not enough system resources to create a process fomitibread.
EAGAIN
more tharPTHREAD_THREADS_MAX threads are already acti

AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_join(3), pthread_detach(3), pthread_attr_init (3).

GSP-Klausur Manual-Auszug 2017-02-22 1

stat(2) stat(2)

NAME
stat, fstat, Istat — get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

t stat(const char *path, struct stat * buf);
t fstat(int fd, struct stat * buf);
int Istat(const char *path, struct stat * buf);

Feature Test Macro Requirements for glibc fee¢ure_test_macro$7)):

Istat(): _BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
These functions return information about a file. No permissions are required on the filetitseffirbthe
case ofstat() andlstat() — execute (search) permission is required on all of the directoripaththat lead
to the file.

stat() stats the file pointed to fpathand fills inbuf .

Istat() is identical tostat(), except that ipathis a symbolic link, then the link itself is stat-ed, not the file
that it refers to.

fstat() is identical tostat(), except that the file to be stat-ed is specified by the file desduptor
All of these system calls returrstatstructure, which contains the following fields:

struct stat {
dev_t st dev; /%D of device containing file */
ino_t st_ino; /*inode number */
mode_t st_mode; /protection */
nlink_t st_nlink; /*number of hard links */
uid_t st_uid; /*user ID of owner */
gid_t st_gid; /*group ID of owner */
dev_t st rde; /* device ID (if special file) */
off t st_size; /*total size, in bytes */
blksize_t st_blksize; /* blocksize for file system 1/0 */
blkent_t st_blocks; /MmMumber of blocks allocated */
time_t st_atime;/* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

I3

Thest_defield describes the device on which this file resides.
Thest_rdevfield describes the device that this file (inode) represents.

The st_sizefield gives the size of the file (if it is a regular file or a symbolic link) in bytes. The size of a
symlink is the length of the pathname it contains, without a trailing null byte.

The st_blocksfield indicates the number of blocks allocated to the file, 512-byte ufiitéis may be
smaller tharst_sizé512 when the file has holes.)

Thest_blksizdield gives the "preferred” blocksize for fedient file system 1/0. (Writing to a file in smaller
chunks may cause an inefficient read-modify-rewrite.)

GSP-Klausur Manual-Auszug 2017-02-22 1

stat(2)

stat(2)

Not all of the Linux file systems implement all of the time fields. Some file system typegswalmting in
such a way that file accesses do not cause an updatesofdlimefield. (Seé'noatime" inmount(8).)

The fieldst_atimeis changed by file accesses, for exampleexscvé2), mknod(2), pipe(2), utime(2) and
read(2) (of more than zero bytes). Other routines, tikmap(2), may or may not updagt_atime

The fieldst_mtimes changed by file modifications, for example,rbynod(2), truncate(2), utime(2) and
write (2) (of more than zero bytesMoreover, st_mtimeof a directory is changed by the creation or dele-
tion of files in that directory The st_mtimefield is not changed for changes iwaer, group, hard link
count, or mode.

The field st_ctimeis changed by writing or by setting inode information (i.evner, group, link count,

mode, etc.).
The following POSIX macros are defined to check the file type usirg_theoddield:

S_ISREG(m) isit a regular file?

S_ISDIR(m) directory?

S_ISCHR(m) charactedevice?

S_ISBLK(m) blockdevice?

S_ISFIFO(m) FIFO(named pipe)?

S_ISLNK(m) symboliclink? (Not in POSIX.1-1996.)

S ISSOCKm) soclet? (Not in POSIX.1-1996.)

RETURN VALUE

On success, zero is returned. On errdris returned, an@rrnois set appropriately.

ERRORS

EACCES
Search permission is denied for one of the directories in the path prefiatiof (See also
path_resolution(7).)

EBADF
fdis bad.

EFAULT
Bad address.

ELOOP
Too mary symbolic links encountered while trarsing the path.

ENAMETOOLONG
File name too long.

ENOENT
A component of the pathathdoes not exist, or the path is an empty string.

ENOMEM
Out of memory (i.e., kernel memory).

ENOTDIR
A component of the path is not a directory.

SEE ALSO

acces§), chmod(2), chown(2), fstatat(2), readlink (2), utime(2), capabilities(7), symlink(7)

GSP-Klausur Manual-Auszug 2017-02-22 2

