accept(2) accept(2)

NAME
accept — accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, int * addrler);

DESCRIPTION
The agumentsis a socket that has been created witbke(3N) and bound to an address witind (3N),
and that is listening for connections after a call#®n(3N). Theaccept()function extracts the first con-
nection on the queue of pending connections, createw aocket with the properties of and allocates a
new file descriptarns, for the sockt. If no pending connections are present on the queue and the socket is
not marked as non-blockingiccept() blocks the caller until a connection is present. If the socket is
marked as non-blocking and no pending connections are present on theapoepéd()returns an error as
described belw. The accept()function uses th@etconfig4) file to determine th6 TREAMS device file
name associated with This is the device on which the connect indication will be accepted. The accepted
socket,ns, is used to read and write data to and from the socket that connecigdk is not used to accept
more connections. The original sockstremains open for accepting further connections.

The agumentaddr is a result parameter that is filled in with the address of the connecting entity as it is
known to the communications layeThe exact format of thaddr parameter is determined by the domain
in which the communication occurs.

The agumentaddrlenis a \alue-result parametetnitially, it contains the amount of space pointed to by
addr; on return it contains the length in bytes of the address returned.

Theaccept()function is used with connection-based socket types, currentlyS®ithk_STREAM.

It is possible taselec{3C) orpoll(2) a sockt for the purpose of accept()by selecting or polling it for a

read. Hovever, this will only indicate when a connect indication is pending; it is still necessary to call
accept()

RETURN VALUES
Theaccept()function returns-1 on error If it succeeds, it returns a nongaive integer that is a descrip-
tor for the accepted socket.

ERRORS
accept()will fail i
EBADF The descriptor is ielid.
EINTR The accept attempt was interrupted by thevesliof a signal.
EMFILE The per-process descriptor table is fu
ENODEV The protocol &mily and type corresponding saould not be found in theetcon-
fig file.
ENOMEM There was insufficient user memomgitable to complete the operation.
EPROTO A protocol error has occurred; for example, 8®REAMS protocol stack has not
been zed or the connection has already been released.
EWOULDBLOCK The socket is marked as non-blocking and no connections are present to be
accepted.
SEE ALSO

poll(2), bind(3N), connec{3N), listen(3N), selec{3C), socke(3N), netconfig4), attributes(5), socke(5)

SP-Klausur Manual-Auszug 2016-07-19 1

bind(2) bind(2)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int bind(int s, const struct sockaddr *name int nameley;

DESCRIPTION
bind() assigns a name to an unnamed stckVhena socket is created witlsocke(3N), it exists in a name
space (address family) but has no name assighiedl() requests that the name pointed toriamebe
assigned to the socket.

RETURN VALUES
If the bind is successfullis returned.A return \alue of-1 indicates an errowhich is further specified in
the globalerrno.

ERRORS
Thebind() call will f

f:

EACCES The requested address is protected and the current user has inadequate permission
to access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVA IL The specified address is netitable on the local machine.

EBADF sis not a valid descriptor.

EINVAL nameleris not the size of a valid address for the specified address family.

EINVAL The socket is already bound to an address.

ENOSR There were insufficier8TREAMSresources for the operation to complete.

ENOTSOCK sis a descriptor for a file, not a socket.

The following errors are specific to binding names inuURe&X domain:

EACCES Search permission is denied for a component of the path prefix of the pathname in
name

EIO An 1/O error occurred while making the directory entry or allocating the inode.

EISDIR A null pathname was specified.

ELOOP Too mary symbolic links were encountered in translating the pathnamarime

ENOENT A component of the path prefix of the pathnameamedoes not exist.

ENOTDIR A component of the path prefix of the pathnameameis not a directory.

EROFS The inode would reside on a read-only file system.

SEE ALSO

unlink (2), socke(3N), attributes(5), socke(5)
NOTES

Binding a name in th&NIX domain creates a socket in the file system that must be deleted by the caller

when it is no longer needed (usinglink (2)).
The rules used in name binding vary between communication domains.

SP-Klausur Manual-Auszug 2016-07-19 1

dup(2) dup(2)
NAME
dup, dup2 - duplicate a file descriptor
SYNOPSIS
#include <unistd.h>
int dup(int oldfd);
int dup2(int oldfd, int newfd);
DESCRIPTION

dup() anddup2() create a copof the file descriptooldfd.
dup() uses the lowest-numbered unused descriptor for thelescriptor.

dup2() makesnewfdbe the cop of oldfd, closing newfdfirst if necessarybut note the following:
* |f oldfdis not a valid file descriptpthen the call fails, andewfdis not closed.

* If oldfdis a valid file descriptoand newfdhas the same value aklifd, thendup2() does nothing, and
returnsnewfd

After a successful return frodup() or dup2(), the old and ne file descriptors may be used interchange-
ably. They refer to the same open file description (epen(2)) and thus share file offset and file status
flags; for example, if the file offset is modified by usiseek2) on one of the descriptors, the offset is also
changed for the other.

The two descriptors do not share file descriptor flags (the close<emféag). Theclose-on-gec flag
(FD_CLOEXEC; seefcntl(2)) for the duplicate descriptor is off.

RETURN VALUE

dup() anddup2() return the ne descriptor or -1 if an eror occurred (in which caserrnois set appropri-
ately).

ERRORS
EBADF
oldfdisn’t an goen file descriptoior newfdis out of the allowed range for file descriptors.
EBUSY
(Linux only) This may be returned lsjup2() during a race condition withpen(2) anddup().
EINTR
Thedup?2() call was interrupted by a signal; sggnal(7).
EMFILE
The process already has the maximum number of file descriptors open and tried to ogen a ne
one.
NOTES

The error returned bglup2() is different from that returned Hgntl(..., F_DUPFD, ...) whennewfdis out
of range. On some systemisp2() also sometimes returfdNVAL like F_DUPFD.

If newfdwas gpen, ay errors that would hee been reported atlosg2) time are lost.A careful program-
mer will not usedup2() without closingnewfdfirst.

SEE ALSO

closg?2), fentl (2), open(2)

SP-Klausur Manual-Auszug 2016-07-19 1

feof/ferror/fileno(3) feof/ferror/fileno(3)

NAME
clearerr feof, ferror fileno — check and reset stream status

SYNOPSIS
#include <stdio.h>

void clearerr(FILE * strean);
t feof(FILE * strean);

t ferror(FILE * strean);

t fileno(FILE * strean);

DESCRIPTION
The functionclearerr() clears the end-of-file and error indicators for the stream pointedstioeaym

The functionfeof() tests the end-of-file indicator for the stream pointed tetlam returning non-zero if
itis set. The end-of-file indicator can only be cleared by the functeamerr().

The functionferror () tests the error indicator for the stream pointed tett®am returning non-zero if it is
set. Theerror indicator can only be reset by tearerr() function.

The functiorfileno() examines the argumestreamand returns its integer descriptor.
For non-locking counterparts, sealocked_stdiq(3).

ERRORS
These functions should not fail and do not set tktereal \ariable errno. (However, in casefileno()
detects that its argument is not a valid stream, it must return -1 aewirseto EBADF.)

CONFORMING TO
The functionslearerr(), feof(), andferror () conform to C89 and C99.

SEE ALSO
open(2), fdopen(3), stdio(3), unlocked_stdiq3)

SP-Klausur Manual-Auszug 2016-07-19 1

fopen/fdopenf/fileno(3) fopen/fdopenf/fileno(3)

NAME
fopen, fdopen, fileno - stream open functions

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * path, const char *mode);
FILE *fdopen(int fildes const char *mode);
int fileno(FILE * strean);
DESCRIPTION
Thefopen function opens the file whose name is the string pointed mathyand associates a stream with
it.

The agumentmodepoints to a string lignning with one of the following sequences (Additional characters
may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.
r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned agiheitg
of the file.

g. The file is created if it does rist,eotherwise it is truncatedlhe
ned at the beginning of the file.

a Open for appending (writing at end of fileJhe file is created if it does natist. Thestream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it doegistot e
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descrifithes The modeof the stream
(one of the alues ", wl, tw, Mat, "a+") must be compatible with the mode of the file descri
The file position indicator of the mestream is set to that belongingfitsles and the error and end-of-file
indicators are clearedModes "w" or "w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream creatdddyyenis closed. The result of applyiridopento a
shared memory object is undefined.

The functiorfileno() examines the argumestreamand returns its integer descriptor.

RETURN VALUE
Upon successful completioiopen, fdopen and freopen return aFILE pointer Otherwise,NULL is
returned and the global variatg@ernois set to indicate the error.
ERRORS
EINVAL
Themodeprovided tofopen, fdopen, or freopenwas invdid.

Thefopen, fdopen andfreopen functions may also fail and setrno for ary of the errors specified for the
routinemalloc(3).

Thefopen function may also fail and setrno for ary of the errors spe

ed for the routiopen(2).
Thefdopen function may also fail and setrno for ary of the errors specified for the routifentl (2).

SEE ALSO
open(2), fclosg3), fileno(3)

SP-Klausur Manual-Auszug 2016-07-19 1

socket(2) / ipv6(7) socket(2) / ipv6(7)

NAME
ipv6, PF_INET6 — Linux IPv6 protocol implementation

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

tcp6_soket = socket(PF_INET6, SOCK_STREAM, 0);
raw6_so&et = socket(PF_INET6, SOCK_RAN, protocol);
udp6_soket = socket(PF_INET6, SOCK_DGRAM, protocol);

DESCRIPTION
Linux 2.2 optionally implements the Internet Protocol, versiofTBis man page contains a description of
the IPv6 basic API as implemented by the Linux kernel and glibc 2.1. Theagees based on the BSD
sockets interface; seecke(7).

The IPv6 API aims to be mostly compatible with thé7) v4 API. Only differences are described in this
man page.

To hind anAF_INET6 soclet to aiy process the local address should be copied frorm@aldr_anyvari-
able which hasn6_addrtype. Instatic initializationssNGADDR_ANY_INIT may also be used, which
expands to a constar@ression. Bottof them are in network order.

IPv4 connections can be handled with the v6 API by using the v4-mapped-on-v6 address type; thus a pro-
gram only needs only to support this API type to support both protocols. This is handled transparently by

the address handling functions in libc.

IPv4 and IPv6 share the local port spadghen you get an IPv4 connection or packet to a IPv6 socket its
source address will be mapped to v6 and it will be mapped to v6.

Address Format

struct sockaddr_in6 {
uintl6_t sin6_dmily; /* AF_INET6 */
uintl6_t sin6_port; /* port number */
uint32_t sin6_flavinfo; /* IPv6 flow information */
struct in6_addr sin6_addr; /* IPv6 address */
uint32_t sin6_scope_id* Scope ID (n&v in 2.4) */

h

struct in6_addr {
unsigned chars6_addr[16]; /1Pv6 address */
h

sin6_familyis alays set toAF_INET6; sin6_portis the protocol port (sesn_portin ip(7)); sin6_flowinfo

is the IPv6 flev identifier;sin6_addris the 128-bit IPv6 addressin6_scope_ids an ID of depending of
on the scope of the address. It isvrie Linux 2.4. Linux only supports it for link scope addresses, in that
casesin6_scope_idontains the interface indéseenetdevicg7))

RETURN VALUES
—1is returned if an error occurs. Otherwise the return value is a descriptor referencing the socket.

NOTES
The sockaddr_in6structure is bigger than the genesiockaddr Programs that assume that all address
types can be stored safely irstauct sokaddrneed to be changed to usteuct sokaddr_stoagefor that
instead.

SEE ALSO

cmsg3),ip(7)

SP-Klausur Manual-Auszug 2016-07-19 1

listen(2) listen(2)

NAME
listen - listen for connections on a socket

SYNOPSIS
#include <sys/types.h> /* See NOTES */
#include <sys/socket.h>

int listen(int sockfd int backlog;

DESCRIPTION
listen() marks the socket referred to bgckfdas a passe @cket, that is, as a socket that will be used to
accept incoming connection requests usiogep(2).

The sockfdamgument is a file descriptor that refers to a socket of 8p€K_STREAM or SOCK_SEQ-
PACKET .

The backlogagument defines the maximum length to which the queue of pending connectisnskio

may grav. If a connection request aves when the queue is full, the client may reeei error with an
indication of ECONNREFUSED or, if the underlying protocol supports retransmission, the request may be
ignored so that a later reattempt at connection succeeds.

RETURN VALUE
On success, zero is returned. On errdris eturned, an@rrnois set appropriately.

ERRORS
EADDRINUSE
Another socket is already listening on the same port.
EBADF
The argumensockfdis not a valid descriptor.
ENOTSOCK
The argumensockfdis not a socket.
NOTES

To accept connections, the following steps are performed:
1. Asocket is created withocke(2).

2. Thesoclet is bound to a local address ushbigd(2), so that other sockets may d@mnnec(2)ed
toit.

3. Awillingness to accept incoming connections and a queue limit for incoming connections are
specified witHisten().

4. Connectionsre accepted withccep(2).

If the backlogamgument is greater than the value/fmoc/sys/net/core/somaxcanthen it is silently trun-
cated to that value; the default value in this file is 128.

EXAMPLE
Seebind(2).

SEE ALSO
accep(2), bind(2), connec(2), socke(2), socke(7)

SP-Klausur Manual-Auszug 2016-07-19 1

pthread_create/pthreacit¢3) pthread_create/pthreadit¢3)

NAME
pthread_create — create awntread / pthread_exit — terminate the calling thread

SYNOPSIS
#include <pthread.h>
int pthr ead_create(pthead_t * thread, pthread_attr_t * attr, void * (* start_routing(void *), void *
arg);
void pthread_exit(void *retval);

DESCRIPTION
pthread_createcreates a e thread of control that@cutes concurrently with the calling thread. Thesne
thread applies the functicstart_routinepassing itarg as first argument. The wethread terminates either
explicitly, by calling pthread_exit(3), or implicitly, by returning from thestart_routinefunction. The latter
case is equalent to callingpthread_exit(3) with the result returned tstart_routineas exit code.
Theattr agument specifies thread attributes to be applied to thehread. Seethread_attr_init (3) for a
complete list of thread attributes. Thtr agument can also HeULL , in which case default attributes are
used: the created thread is joinable (not detached) and has default (non real-time) schedyling polic
pthread_exit terminates thexecution of the calling threadAll cleanup handlers that te been set for the
calling thread withpthread_cleanup_puslif3) are &ecuted in reerse order (the most recently pushed han-
dler is executed first). Finalization functions for thread-specific data are then called fayslthat hae
non-NULL values associated with them in the calling thread fgbeead_key_creaté3)). Finally exe-
cution of the calling thread is stopped.
The retval amgument is the return value of the thread. It can be consulted from another thread using
pthread_join(3).

RETURN VALUE
On success, the identifier of thewhg created thread is stored in the location pointed bythtesad argu-
ment, and a O is returned. On er@ron-zero error code is returned.
The pthread_exit function neer returns.

ERRORS
EAGAIN

not enough system resources to create a process fomitieread.
EAGAIN
more tharPTHREAD_THREADS_MAX threads are already acti

AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_join(3), pthread_detach(3), pthread_attr_init (3).

SP-Klausur Manual-Auszug 2016-07-19 1

pthread_detach(3) pthread_detach(3)

NAME
pthread_detach — put a running thread in the detached state

SYNOPSIS
#include <pthread.h>

int pthread_detach(pthread_t th);

DESCRIPTION
pthread_detach put the threadh in the detached state. This guarantees that the memory resources con-
sumed byth will be freed immediately wheth terminates. Havever, this prevents other threads from syn-
chronizing on the termination ¢f usingpthread_join.

A thread can be created initially in the detached state, usimtpthehstateattribute topthread_creatg3).
In contrastpthread_detachapplies to threads created in the joinable state, and which need to be put in the
detached state later.

After pthread_detachcompletes, subsequent attempts to perfptimead_join on th will fail. If another
thread is already joining the thretidat the timepthread_detachis called,pthread_detachdoes nothing
and leaesth in the joinable state.

RETURN VALUE
On success, 0 is returned. On ereomn-zero error code is returned.

ERRORS
ESRCH
No thread could be found corresponding to that specifigd by

EINVAL
the threadh is already in the detached state

AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_creatg3), pthread_join(3), pthread_attr_setdetachstaté3).

SP-Klausur Manual-Auszug 2016-07-19 1

sigaction(2) sigction(2)

NAME
sigaction — POSIX signal handling functions.

SYNOPSIS
#include <signal.h>

int sigaction(int signum const struct sigaction *act, struct sigaction *oldact);

DESCRIPTION
Thesigactionsystem call is used to change the action taken by a process on receipt of a specific signal.

signumspecifies the signal and can beg &alid signal excepBIGKILL andSIGSTOP.

If actis non—null, the ne action for signakignumis installed fromact. If oldactis non—-null, the pndous
action is seed in oldact

Thesigactionstructure is defined as something like

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

}

On some architectures a union igadlved - do not assign to bo#a_handlerandsa_sigaction

The sa_restorerelement is obsolete and should not be use@SIX does not specify sa_restorerele-
ment.

sa_handlerspecifies the action to be associated wignumand may beSIG_DFL for the default action,
SIG_IGN to ignore this signal, or a pointer to a signal handling function.

sa_maslgives a mask of signals which should be blocked durimgcetion of the signal handletn addi-
tion, the signal which triggered the handler will be blocked, unlesSAh&lODEFER or SA_NOMASK
flags are used.

sa_flagsspecifies a set of flags which modify the habar of the signal handling process. It is formed by
the bitwise OR of zero or more of the following:

SA_NOCLDSTOP
If signumis SIGCHLD, do rot receve rotification when child processes stop (i.e., when
child processes reae ane of SIGSTOP, SIGTSTP, SIGTTIN or SIGTTOU).

SA_RESTART
Provide behaiour compatible with BSD signal semantics by making certain system calls
restartable across signals.

RETURN VALUES
sigactionreturns 0 on success and -1 on error.

ERRORS
EINVAL
An invalid signal was specified. This will also be generated if an attempt is made to change the
action forSIGKILL or SIGSTOP, which cannot be caught.
SEE ALSO
kill (1), kill (2), killpg (2), paus€?2), sigsetop$3),
SP-Klausur Manual-Auszug 2016-07-19 1

sigsetops(3C) sigsetops(3C)

NAME
sigsetops, sigemptyset, sigfillset, sigaddset, sigdelset, sigismember — manipulate sets of signals

SYNOPSIS
#include <signal.h>

int sigemptyset(sigset_t $ef);

int sigfillset(sigset_t *sef);

int sigaddset(sigset_t $et int signo);

int sigdelset(sigset_t $et, int signo);

int sigismember(sigset_t $et, int signo);
DESCRIPTION

These functions manipulagigset_tdata types, representing the set of signals supported by the implemen-
tation.

sigemptyset()initializes the set pointed to Isgtto exclude all signals defined by the system.
sigfillset()initializes the set pointed to Isgtto include all signals defined by the system.
sigaddset()adds the individual signal specified by the valusigiioto the set pointed to tset
sigdelset()deletes the individual signal specified by the valusigriofrom the set pointed to kset

sigismember()checks whether the signal specified by the valuggsfois a member of the set pointed to
by set
Any object of typesigset_tmust be initialized by applying eithasigemptyset()or sigdfillset() before
applying ay other operation.

RETURN VALUES
Upon successful completion, teegismember()function returns aalue of one if the specified signal is a
member of the specified set, or a value of 0 if it is not. Upon successful completion, the other functions
return a value of 0. Otherwise a value of —1 is returnedeam is set to indicate the error.

ERRORS
sigaddset() sigdelset() and sigismember()will fail if the following is true:

EINVAL The value of theignoargument is not a valid signal number.
sigfillset() will fail if the following is true:
EFAULT Thesetargument specifies anvilid address.

SEE ALSO

sigaction(2), sigpending2), sigprocmask2), sigsuspen@?), attributes(5), signal(5)

SP-Klausur Manual-Auszug 2016-07-19 1

printf(3) printf(3)

NAME

printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf — formatted output wasion
SYNOPSIS

#include <stdio.h>

int printf(const char * format, ...);

tf(FILE * stream const char *format,
t sprintf(char * str, const char *format, ...);
t snprintf(char * str, size_tsize const char *format, ...);

DESCRIPTION
The functions in therintf () family produce output according tof@matas described belo The func-
tions printf () and vprintf () write output tostdout the standard output strearprintf () and vfprintf ()
write output to the gien outputstream sprintf (), snprintf (), vsprintf () andvsnprintf () write to the char
acter stringstr.

The functionssnprintf () andvsnprintf () write at mostizebytes (including the trailing null byte (\0") to
str.

These eight functions write the output under the control fofraat string that specifies mosubsequent
amguments (or @uments accessed via the variable-length argument facilitedarf(3)) are cowerted for
output.

Return value
Upon successful return, these functions return the number of characters printed (not including the tr
"\O' used to end output to strings).

The functionssnprintf () andvsnprintf() do not write more thasizebytes (including the trailing "\0")If

the output was truncated due to this limit then the retahaevis the number of characters (not including
the trailing \0') which wuld have been written to the final string if enough space had beslalble. Thus,

a return value obizeor more means that the output was truncated. (See alse tredier NOTES.)

If an output error is encountered, ayaéve \alue is returned.

Format of the format string
The format string is a character string, beginning and ending in its initial shift statg, iTla@ format
string is composed of zero or more direesi ordinary characters (n&t), which are copied unchanged to
the output stream; and o@@nsion specifications, each of which results in fetching zero or more subsequent
amguments. Eacleorversion specification is introduced by the charaéterand ends with aonversion
specifier In between there may be (in this order) zero or nflags an gtional minimumfield width an
optionalprecisionand an optiondength modifier

The corversion specifier
A character that specifies the type of wasion to be applied. An example for a gersion specifier is:

s The const char *argument is gpected to be a pointer to an array of character type (pointer to a
string). Characterérom the array are written up toufbnot including) a terminating null byte
(\0"; if a precision is specified, no more than the number specified are wiitemrecision is
given, no null byte need be present; if the precision is not specified, or is greater than the size of
the arraythe array must contain a terminating null byte.

SEE ALSO
printf (1), asprintf(3), dprintf (3), scan{3), setlocalé3), wcrtomb(3), wprintf (3), localg5)

SP-Klausur Manual-Auszug 2016-07-19 1

stremp(3) stremp(3)

NAME
strcmp, strncmp — comparedvtrings

SYNOPSIS
#include <string.h>

int strcmp(const char *s1, const char *s2);

int strncmp(const char *s1, const char *s2 size_tn);

DESCRIPTION
The stremp() function compares the twsrings sl ands2 It returns an integer less than, equal to, or
greater than zero #1is found, respeactely, to be kss than, to match, or be greater ts2n
Thestrncmp() function is similarexcept it only compares the first (at mastharacters of1lands2

RETURN VALUE
Thestrcmp() andstrncmp() functions return an integer less than, equal to, or greater than géforifthe
first n bytes thereof) is found, respedy, to be Ess than, to match, or be greater th2an

CONFORMING TO
SVr4, 4.3BSD, C89, C99.

SEE ALSO
bemp(3), mememp(3), strcasecm3), strcoll(3), strncasecmy§3), wesecmp(3), wesnemp(3)

SP-Klausur Manual-Auszug 2016-07-19 1

strtok(3) strtok(3)

NAME
strtok, strtok_r — extract tokens from strings

SYNOPSIS
#include <string.h>

char *strtok(char * str, const char *delim);

char *strtok_r(char * str, const char *delim, char ** savept);

DESCRIPTION
Thestrtok () function breaks a string into a sequence of zero or more nonemphsto®rthe first call to
strtok () the string to be parsed should be specifiestin In each subsequent call that should parse the
same stringstr must be NULL.

The delim agument specifies a set of bytes that delimit the tokens in the parsed string. The caller may
specify different strings idelimin successie alls that parse the same string.

Each call tostrtok () returns a pointer to a null-terminated string containing the neghtokhisstring does
not include the delimiting byte. If no more tokens are fostriok () returns NULL.

A sequence of calls tstrtok () that operate on the same string maintains a pointer that determines the point
from which to start searching for the nexteak Thefirst call tostrtok() sets this pointer to point to the

first byte of the string. The start of the next token is determined by scanniragddiw the next nondeli
iter byte instr. If such a byte is found, it is taken as the start of the neentokf no such byte is found,
then there are no more tokens, atdok () returns NULL. (A string that is empty or that contains only
delimiters will thus causstrtok () to return NULL on the first call.)

The end of each token is found by scanning forward until either the next delimiter byte is found or until the
terminating null byte (\0") is encountered. If a delimiter byte is found, iesitten with a null byte to
terminate the current token, astitok () saves a minter to the following byte; that pointer will be used as

the starting point when searching for the nexetokInthis casestrtok() returns a pointer to the start of

the found token.

From the abee description, it follows that a sequence ofoter more contiguous delimiter bytes in the
parsed string is considered to be a single delimatet that delimiter bytes at the start or end of the string
are ignored. Put another way: the tokens returnedttigk () are alvays nonempty strings. Thus, for
example, gven the string &aa;;bbb;, successie alls to strtok() that specify the delimiter string,”
would return the stringsaad' and "bbb', and then a null pointer.

The strtok_r () function is a reentrantevsionstrtok (). Thesaveptrargument is a pointer to @har * vari-

able that is used internally Isyrtok_r () in order to maintain context between sucaessills that parse the
same string. On the first call &irtok_r (), str should point to the string to be parsed, and the value of
saveptris ignored. In subsequent callstr should be NULL, andaveptrshould be unchanged since the
previous call.

Different strings may be parsed concurrently using sequences of cstittoko r () that specify dilerent
saveptrarguments.

RETURN VALUE
strtok () andstrtok_r () return a pointer to the next token, or NULL if there are no more tokens.

ATTRIBUTES
Multithreading (see pthreads(7))
Thestrtok() function is not thread-safe, te&tok_r () function is thread-safe.

SP-Klausur Manual-Auszug 2016-07-19 1

gsort(3)

NAME

gsort(3)

gsort, gsort_r — sort an array

SYNOPSIS

#include <stdlib.h>

void gsort(void *base sze_tnmembsize_tsize
int (* compai)(const void *, const void *));

void gsort_r(void * base sze_tnmembsize_tsize
int (* compai)(const void *, const void *, void *),
void * arg);

Feature Test Macro Requirements for glibc (se¢ure_test_macro$7)):

gsort_r(): _GNU_SOURCE

DESCRIPTION

Thegsort() function sorts an array withmembelements of sizeize Thebaseagument points to the start
of the array.

The contents of the array are sorted in ascending order according to a comparison function pointed to by
compag which is called with tw arguments that point to the objects being compared.

The comparison function must return an integer less than, equal to, or greater than zero if therfiesttar

is considered to be respesly less than, equal to, or greater than the second.oli@mbers compare as

equal, their order in the sorted array is undefined.

The gsort_r() function is identical taysort() except that the comparison functioompartakes a third
argument. Apointer is passed to the comparison functionar@ In this way, the comparison function

does not need to use global variables to pass through arbitrary arguments, and is therefore reentrant and
safe to use in threads.

If no global variables are needed in the comparison functiorpar, gsort() is also safe to use in threads.

RETURN VALUE

Thegsort() andgsort_r() functions return no value.

VERSIONS

gsort_r() was added to glibc in version 2.8.

CONFORMING TO

NOTES

Thegsort() function conforms to SVr4, 4.3BSD, C89, C99.

Library routines suitable for use as tbemparamgument togsort() include alphasort(3) andversion-
sort(3). To compare C strings, the comparison function can s@iimp(3), as shown in thexample
below.

EXAMPLE

SP-Klausur Manual-Auszug

For one example of use, see the example ubdearch(3).

Another example is the following program, which sorts the strings @i its command-line arguments:
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

static int
cmpstringp(const void *p1, const void *p2)

{

2016-07-19 1

gsort(3) gsort(3)

/* The actual arguments to this function are "pointers to
pointers to char", but strcmp(3) arguments are "pointers
to char", hence the following cast plus dereference */

return stremp(* (char * const *) p1, * (char * const *) p2);

int
main(int argc, char *argv[])
{

intj;

if (argc < 2) {
fprintf(stdert "Usage: %s <string>...\n", argv[0]);
exit(EXIT_FAILURE);

}

gsort(&argv[1], argc - 1, sizeof(char *), cmpstringp);

for (j = 1; j < argc; j++)
puts(argv[j]);
exit(EXIT_SUCCESS);
}

SEE ALSO
sort(1), alphasort(3), strcmp(3), versionsort(3)

COLOPHON
This page is part of release 3.74 of the Liman-paes project. Adescription of the project, information
about reporting bugs, and the latest version of this page, can be found
http://www.kernel.org/doc/man-pages/.

SP-Klausur Manual-Auszug 2016-07-19 2

at

