opendir/readdir(3) opendir/readdir(3)

NAME
opendir — open a directory / readdir — read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>
DIR *opendir(const char *name);

struct dirent *readdir(DIR * dir);
int readdir_r(DIR * dirp, struct dirent * entry, struct dirent ** result);

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the directong and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to lalr. It returns NULL on reaching the end-of-file or if an error occurred.

DESCRIPTION readdir_r
Thereaddir_r() function initializes the structure referenced egtry and storesa pointer to this structure
in result On successful return, the pointer returned@sult will have the samevalue as the agument
entry. Upon reaching the end of the directory stream, this pointer wid the value NULL.

The data returned bgeaddir() is overwritten by subsequent calls teaddir() for the same directory
stream.

Thedirentstructure is defined as follows:

struct dirent {

long d_ino; [* inode number */
off_t d_of; /* offset to the next dirent */
unsigned shord_reclen; /Mength of this record */
unsigned chard_type; [*type of file */
char d_name[256]; /* filename */
h
RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

readdir_r() returns Qf successful or an error number to indicate failure.

ERRORS
EACCES
Permission denied.
ENOENT
Directory does not exist, mameis an empty string.
ENOTDIR
nameis not a directory.
GSP-Klausur Manual-Auszug 2016-02-17 1

feof/ferror/fileno(3) feof/ferror/fileno(3)

NAME
clearerr feof, ferror fileno — check and reset stream status

SYNOPSIS
#include <stdio.h>

void clearerr(FILE * strean);
t feof(FILE * strean);

t ferror(FILE * strean);

t fileno(FILE * strean);

DESCRIPTION
The functionclearerr() clears the end-of-file and error indicators for the stream pointedstioeaym

The functionfeof() tests the end-of-file indicator for the stream pointed tetlgam returning non-zero if
itis set. The end-of-file indicator can only be cleared by the functeamerr().

The functionferror () tests the error indicator for the stream pointed tett®am returning non-zero if it is
set. Theerror indicator can only be reset by tearerr() function.

The functiorfileno() examines the argumestreamand returns its integer descriptor.
For non-locking counterparts, sealocked_stdiq(3).

ERRORS
These functions should noaif and do not set the externariable errno. (However, in casefileno()
detects that its argument is not a valid stream, it must return -1 aewirseto EBADF.)

CONFORMING TO
The functionslearerr(), feof(), andferror () conform to C89 and C99.

SEE ALSO
open(2), fdopen(3), stdio(3), unlocked_stdiq3)

GSP-Klausur Manual-Auszug 2016-02-17 1

fopen/fdopen(3) fopen/fdopen(3)
NAME
fopen, fdopen, fileno - stream open functions
SYNOPSIS
#include <stdio.h>
FILE *fopen(const char * path, const char *mode);
FILE *fdopen(int fildes const char *mode);
int fileno(FILE * strean);
DESCRIPTION

Thefopen function opens the file whose name is the string pointed fathyand associates a stream with
it.

The agumentmodepoints to a string beginning with one of the fallng sequences (Additional characters
may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.
r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned agiheitg
of the file.

grhe file is created if it does not exist, otherwise it is truncatémt

ned at the beginning of the file.

a Open for appending (writing at end of file). The file is created if it doesxigit erhestream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it doegistot e
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descrifithes The modeof the stream
(one of the alues ", wl tw, Mat, "a+") must be compatible with the mode of the file descri
The file position indicator of the mestream is set to that belongingfitsles and the error and end-of-file
indicators are cleared. Modes "w w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream creatdddyyenis closed. The result of applyiridopento a
shared memory object is undefined.

The functiorfileno() examines the argumestreamand returns its integer descriptor.

RETURN VALUE

Upon successful completioiopen, fdopen and freopen return aFILE pointer Otherwise,NULL is
returned and the global variatdernois set to indicate the error.

ERRORS

EINVAL
Themodeprovided tofopen, fdopen, or freopenwas invdid.

Thefopen, fdopen andfreopen functions may also fail and setrno for ary of the errors specified for the
routinemalloc(3).

Thefopen function may also fail and setrno for ary of the errors specified for the routiopen(2).

Thefdopen function may also fail and setrno for ary of the errors specified for the routifentl (2).

SEE ALSO

open(2), fclosg3), fileno(3)

GSP-Klausur Manual-Auszug 2016-02-17 1

getc/fgets/putc/fputs(3)

getc/fgets/putc/fputs(3)

NAME
fgetc, fgets, getc, getchdputc, fputs, putc, putchar input and output of characters and strings
SYNOPSIS
#include <stdio.h>
int fgetc(FILE * strean);
char *fgets(char *s, int size FILE * strean);
t getc(FILE * strean);
t getchar(void);
int fputc(int c, FILE * strean);
int fputs(const char *s, FILE * strean);
int putc(int ¢, FILE * strean);
int putchar(int c);
DESCRIPTION
fgetq() reads the next character frastreamand returns it as amnsigned bar cast to arint, or EOF on
end of file or error.
getd) is equvalent tofgeto() except that it may be implemented as a macro whigluaesstreammore
than once.
getchan() is equvaent togetc(stdin).
fgetq) reads in at most one less tlerecharacters fronstreamand stores them into theffer pointed to
by s. Reading stops after &8OF or a nevline. If a rewline is read, it is stored into theiffer. A \0’ is
stored after the last character in the buffer.
fputc() writes the charactey, cast to arunsigned charto stream
fputs() writes the string to stream without its terminating null byte (\0").
putc() is equvalent tofputc() except that it may be implemented as a macro whietuatesstreammore
than once.
putchar(c); is equvalent toputc(c, stdou).
Calls to the functions described here can beethiwith each other and with calls to other output functions
from thestdiolibrary for the same output stream.
RETURN VALUE
fget), getd) andgetchan() return the character read aswarsigned har cast to arint or EOF on end of
file or error.
fgety) returnss on success, and NULL on error or when end of file occurs while no charaaterkeba
read. fputc(), putc() andputchar() return the character written as amsigned bar cast to annt or EOF
on error.
fputs() returns a nonmgative rumber on success, BOF on error.
SEE ALSO
read(2), write (2), ferror (3), fgetwc(3), fgetws(3), fopen(3), fread(3), fseek3), getline(3), getwchar(3),
scanf(3), ungetwq3), write (2), ferror (3), fopen(3), fputwc(3), fputws(3), fseek3), fwrite (3), gety3),
putwchar(3), scan{3), unlocked_stdiq3)
GSP-Klausur Manual-Auszug 2016-02-17 1

pthread_create/pthreacit3) pthread_create/pthreadit¢3)

NAME
pthread_create — create awntread / pthread_exit — terminate the calling thread

SYNOPSIS
#include <pthread.h>

int pthr ead_create(pthead_t * thread, pthread_attr_t * attr, void * (* start_routing(void *), void *
arg);

void pthread_exit(void *retval);

DESCRIPTION
pthread_createcreates a e thread of control thatecutes concurrently with the calling thread. Thevne
thread applies the functicstart_routinepassing itarg as first agument. The ne thread terminates either
explicitly, by calling pthread_exit(3), or implicitly, by returning from thestart_routinefunction. The latter
case is equelent to callingpthread_exit(3) with the result returned tstart_routineas exit code.

Theattr agument specifies thread attites to be applied to thew¢hread. Seethread_attr_init (3) for a
complete list of thread attributes. Tatr agument can also RULL , in which case default attributes are
used: the created thread is joinable (not detached) and has default (non real-time) schedyling polic

pthread_exit terminates thexecution of the calling threadAll cleanup handlers that te been set for the
calling thread withpthread_cleanup_puslif3) are &ecuted in reerse order (the most recently pushed han-
dler is executed first). Finalization functions for thread-specific data are then called fayalthat hae
non-NULL values associated with them in the calling thread fgbeead_key_creaté3)). Finally exe-
cution of the calling thread is stopped.

The retval amgument is the return value of the thread. It can be consulted from another thread using
pthread_join(3).

RETURN VALUE
On success, the identifier of thewte created thread is stored in the location pointed bythteaad argu-
ment, and a 0 is returned. On er@ron-zero error code is returned.

The pthread_exit function neer returns.

ERRORS
EAGAIN
not enough system resources to create a process fomitibread.

EAGAIN
more tharPTHREAD_THREADS_MAX threads are already acti

AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_join(3), pthread_detach(3), pthread_attr_init (3).

GSP-Klausur Manual-Auszug 2016-02-17 1

pthread_detach(3) pthread_detach(3)

NAME
pthread_detach — put a running thread in the detached state
SYNOPSIS
#include <pthread.h>
int pthread_detach(pthread_t th);
DESCRIPTION
pthread_detach put the threadh in the detached state. This guarantees that the memory resources con-
sumed byth will be freed immediately wheth terminates. Havever, this prevents other threads from syn-
chronizing on the termination ¢ usingpthread_join.
A thread can be created initially in the detached state, usimtgthehstateattribute topthread_creatg3).
In contrastpthread_detachapplies to threads created in the joinable state, and which need to be put in the
detached state later.
After pthread_detachcompletes, subsequent attempts to perfptimead_join on th will fail. If another
thread is already joining the thretidat the timepthread_detachis called,pthread_detachdoes nothing
and leaesth in the joinable state.
RETURN VALUE
On success, 0 is returned. On ereomn-zero error code is returned.
ERRORS
ESRCH
No thread could be found corresponding to that specifigd by
EINVAL
the threadh is already in the detached state
AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>
SEE ALSO
pthread_creatg3), pthread_join(3), pthread_attr_setdetachstaté3).
GSP-Klausur Manual-Auszug 2016-02-17 1

printf(3) printf(3)

NAME

printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf — formatted output wasion
SYNOPSIS

#include <stdio.h>

int printf(const char * format, ...);

int fprintf(FILE * stream const char *format, ...);

int sprintf(char * str, const char *format, ...);

int snprintf(char * str, size_tsize const char *format, ...);

DESCRIPTION
The functions in therintf () family produce output according tof@matas described belo The func-
tions printf () and vprintf () write output tostdout the standard output strearprintf () and vfprintf ()
write output to the gien outputstream sprintf (), snprintf (), vsprintf () andvsnprintf () write to the char
acter stringstr.

The functionssnprintf () andvsnprintf () write at mossizebytes (including the tr
str.

ng null byte (\0") to

The functionsvprintf (), vfprintf (), vsprintf(), vsnprintf() are equialent to the functionsprintf (),
fprintf (), sprintf (), snprintf (), respectiely, except that thg are called with ava_listinstead of a ariable
number of aguments. Theséunctions do not call thea_endmacro. Becauséhey invoke the va_arg
macro, the value afpis undefined after the call. Sselarg(3).

These eight functions write the output under the control fofraat string that specifies losubsequent
arguments (or uments accessed via the variable-length argument facilit&tdafy(3)) are cowerted for
output.

Return value
Upon successful return, these functions return the number of characters printed (not including the trailing
\O' used to end output to strings).

The functionssnprintf () andvsnprintf () do not write more thasizebytes (including the trailing "\0")If

the output was truncated due to this limit then the retahnevis the number of characters (not including
the trailing "\0") which wuld hare been written to the final string if enough space had bealable. Thus,

a return value obizeor more means that the output was truncated. (See also teder NOTES.)

If an output error is encountered, ayaéve \alue is returned.

Format of the format string
The format string is a character string, beginning and ending in its i
string is composed of zero or more direest ordinary characters (n&t), which are copied unchanged to
the output stream; and aansion specifications, each of which results in fetching zero or more subsequent
arguments. Eacleorversion specification is introduced by the charaéterand ends with aonversion
specifier In between there may be (in this order) zero or nflags an gtional minimumfield width an
optionalprecisionand an optiondength modifier

The aguments must correspond properly (after type promotion) with theersion specifier By default,
the arguments are used in the ordeemi where each *' and each wersion specifier asks for the xte
argument (and it is an error if insufficiently maarguments are gen). Onecan also specifyxlicitly
which argument is taken, at each place where gumant is required, by writing "%m$" instead of ‘%' and
"*m$" instead of "*', where the decimal integer m denotes the position indhenant list of the desired
argument, incdeed starting from 1. Thus,

printf("%*d", width, num);

GSP-Klausur Manual-Auszug 2016-02-17 1

printf(3) printf(3)

and
printf("%2$*1$d", width, num);

are equidlent. Thesecond style allos repeated references to the sangeirment. TheC99 standard does

not include the style using '$', which comes from the Single Unix Specification. If the style using '$' is
used, it must be used throughout for allvesions taking an argument and all width and precisign-ar
ments, but it may be mixed with "%%" formats which do not consumegamant. Therenay be no gps

in the numbers of arguments specified using '$'; for exampleifents 1 and 3 are specified, argument 2
must also be specified somewhere in the format string.

For some numeric corersions a radix character ("decimal point") or thousands’ grouping character is used.
The actual character used depends oL @eNUMERIC part of the locale The POSIX locale uses "' a
radix characterand does not hee a gouping characterThus,

printf("%'.2f", 1234567.89);

results in "1234567.89" in the POSIX locale, in "1234567,89" in the nl_NL locale, and in "1.234.567,89" in
the da_DK locale.

The corversion specifier
A character that specifies the type ofwasion to be applied. An example for a version specifier is:

s The const char *amgument is gpected to be a pointer to an array of character type (pointer to a
string). Characterfrom the array are written up to (but not including) a terminating null byte
(\0%; if a precision is specified, no more than the number specified are written. If a precision is
given, no null byte need be present; if the precision is not specified, or is greater than the size of
the arraythe array must contain a terminating null byte.

SEE ALSO
printf (1), asprintf(3), dprintf (3), scan{3), setlocalé3), wcrtomb(3), wprintf (3), locale(5)

COLOPHON
This page is part of release 3.05 of the Liman-payes project. Adescription of the project, and informa-
tion about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.

GSP-Klausur Manual-Auszug 2016-02-17 2

stat(2) stat(2)

NAME
stat, fstat, Istat — get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char *path, struct stat * buf);
int fstat(int fd, struct stat * buf);
int Istat(const char *path, struct stat * buf);

Feature Test Macro Requirements for glibc (se¢ure_test_macro$7)):

Istat(): _BSD_SOURCE || _XOPEN_SOURCE >= 500
DESCRIPTION

These functions return information about a file. No permissions are required on the file itself, but — in the

case ofstat() andlstat() — execute (search) permission is required on all of the directoripaththat lead
to the file.

stat() stats the file pointed to Ipathand fills inbuf .

Istat() is identical tostat(), except that ipathis a symbolic link, then the link itself is stat-ed, not the file

that it refers to.

fstat() is identical tostat(), except that the file to be stat-ed is specified by the file desduptor
All of these system calls returrstatstructure, which contains the following fields:

struct stat {
dev_t st dev; /%D of device containing file */
ino_t st_ino; /*inode number */
mode_t st_mode; /protection */
nlink_t st_nlink; /*number of hard links */
uid_t [*user ID of owner */
gid_t I*group ID of owner */
dev_t st rde; /* device ID (if special file) */
off t st_size; /*total size, in bytes */
blksize_t st_blksize; /* blocksize for file system 1/0 */
blkent_t st_blocks; /Mmumber of blocks allocated */
time_t st_atime;/* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

I8

Thest_defield describes the device on which thi

ile resides.

Thest_rdevfield describes the device that this file (inode) represents.

The st_sizefield gives the size of the file (if it is a regular file or a symbolic link) in bytes. The size of a

symlink is the length of the pathname it contains, without a trailing null byte.

The st_blocksfield indicates the number of blocks allocated to the file, 512-byte units. (This may be

smaller tharst_sizé512 when the file has holes.)

Thest_blksizdield gives the "preferred" blocksize for efficient file system I/QVriting to a file in smaller

chunks may cause an inefficient read-modify-rewrite.)

GSP-Klausur Manual-Auszug 2016-02-17 1

stat(2)

stat(2)

Not all of the Linux file systems implement all of the time fiel8sme file system types allanounting in
such a way that file accesses do not cause an updatestfdlimefield. (Seé'noatime” inmount(8).)

The fieldst_atimeis changed by file accesses, for exampleexscvé2), mknod(2), pipe(2), utime(2) and
read(2) (of more than zero bytes). Other routines, tik@ap(2), may or may not updagt_atime

The fieldst_mtimes changed by file modifications, for example,roynod(2), truncate(2), utime(2) and
write (2) (of more than zero bytesMoreover, st_mtimeof a directory is changed by the creation or dele-
tion of files in that directory The st_mtimefield is not changed for changes irwaer, group, hard link
count, or mode.

The fieldst_ctimeis changed by writing or by setting inode information (i.evner, group
mode, etc.).

The following POSIX macros are defined to check the file type usirg_theoddield:

S_ISREG(m) isit a regular file?

S_ISDIR(m) directory?

S_ISCHR(m) charactedevice?

S_ISBLK(m) blockdevice?

S_ISFIFO(m) FIFO(named pipe)?

S_ISLNK(m) symboliclink? (Not in POSIX.1-1996.)

S ISSOCKm) soclet? (Not in POSIX.1-1996.)

RETURN VALUE

On success, zero is returned. On errdris returned, an@rrnois set appropriately.

ERRORS
EACCES
Search permission is denied for one of the directories in the path prefiattof (See also
path_resolution(7).)
EBADF
fdis bad.
EFAULT
Bad address.
ELOOP
Too mary symbolic links encountered while trarsing the path.
ENAMETOOLONG
File name too long.
ENOENT
A component of the pathathdoes not exist, or the path is an empty string.
ENOMEM
Out of memory (i.e., kernel memory).
ENOTDIR
A component of the path is not a directory.
SEE ALSO

acces§), chmod(2), chown(2), fstatat(2), readlink (2), utime(2), capabilities(7), symlink(7)

GSP-Klausur Manual-Auszug 2016-02-17 2

STRSTR(3) STRSTR(3)

NAME
strstr — locate a substring

SYNOPSIS
#include <string.h>

char *strstr(const char *haystack const char *needl¢;

DESCRIPTION
Thestrstr() function finds the first occurrence of the substriegdlein the stringhaystack The terminat-
ing null bytes (\0') are not compared.

RETURN VALUE
This function returns a pointer to the beginning of the substring, or NULL if the substring is not found.

SEE ALSO
index(3), memchr(3), rindex(3), strcasecmg3), strchr(3), string(3), strpbrk (3), strsep(3), strspn(3),
strtok (3), wesstr(3)

GSP-Klausur Manual-Auszug 2016-02-17 1

