accept(2) accept(2)

NAME
accept — accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, int * addrler);

DESCRIPTION
The agumentsis a socket that has been created witbke(3N) and bound to an address witind (3N),
and that is listening for connections after a call#®n(3N). Theaccept()function extracts the first con-
nection on the queue of pending connections, createw aocket with the properties of and allocates a
new file descriptarns, for the sockt. If no pending connections are present on the queue and the socket is
not marked as non-blockingiccept() blocks the caller until a connection is present. If the socket is
marked as non-blocking and no pending connections are present on theapoepéd()returns an error as
described belw. The accept()function uses th@etconfig4) file to determine th6 TREAMS device file
name associated with This is the device on which the connect indication will be accepted. The accepted
socket,ns, is used to read and write data to and from the socket that connecigdk is not used to accept
more connections. The original sockstremains open for accepting further connections.

The agumentaddr is a result parameter that is filled in with the address of the connecting entity as it is
known to the communications layeThe exact format of thaddr parameter is determined by the domain
in which the communication occurs.

The agumentaddrlenis a \alue-result parametetnitially, it contains the amount of space pointed to by
addr; on return it contains the length in bytes of the address returned.

Theaccept()function is used with connection-based socket types, currentlyS®ithk_STREAM.

It is possible taselec{3C) orpoll(2) a sockt for the purpose of accept()by selecting or polling it for a

read. Hovever, this will only indicate when a connect indication is pending; it is still necessary to call
accept()

RETURN VALUES
Theaccept()function returns-1 on error If it succeeds, it returns a nongaive integer that is a descrip-
tor for the accepted socket.

ERRORS
accept()will fail i
EBADF The descriptor is ielid.
EINTR The accept attempt was interrupted by thevesliof a signal.
EMFILE The per-process descriptor table is fu
ENODEV The protocol &mily and type corresponding saould not be found in theetcon-
fig file.
ENOMEM There was insufficient user memomgitable to complete the operation.
EPROTO A protocol error has occurred; for example, 8®REAMS protocol stack has not
been zed or the connection has already been released.
EWOULDBLOCK The socket is marked as non-blocking and no connections are present to be
accepted.
SEE ALSO

poll(2), bind(3N), connec{3N), listen(3N), selec{3C), socke(3N), netconfig4), attributes(5), socke(5)

SP-Klausur Manual-Auszug 2015-07-21 1

bind(2) bind(2)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int bind(int s, const struct sockaddr *name int nameley;

DESCRIPTION
bind() assigns a name to an unnamed stckVhena socket is created witlsocke(3N), it exists in a name
space (address family) but has no name assighiedl() requests that the name pointed toriamebe
assigned to the socket.

RETURN VALUES
If the bind is successfullis returned.A return \alue of-1 indicates an errowhich is further specified in
the globalerrno.

ERRORS
Thebind() call will f

f:

EACCES The requested address is protected and the current user has inadequate permission
to access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVA IL The specified address is netitable on the local machine.

EBADF sis not a valid descriptor.

EINVAL nameleris not the size of a valid address for the specified address family.

EINVAL The socket is already bound to an address.

ENOSR There were insufficier8TREAMSresources for the operation to complete.

ENOTSOCK sis a descriptor for a file, not a socket.

The following errors are specific to binding names inuURe&X domain:

EACCES Search permission is denied for a component of the path prefix of the pathname in
name

EIO An 1/O error occurred while making the directory entry or allocating the inode.

EISDIR A null pathname was specified.

ELOOP Too mary symbolic links were encountered in translating the pathnamarime

ENOENT A component of the path prefix of the pathnameamedoes not exist.

ENOTDIR A component of the path prefix of the pathnameameis not a directory.

EROFS The inode would reside on a read-only file system.

SEE ALSO

unlink (2), socke(3N), attributes(5), socke(5)
NOTES

Binding a name in th&NIX domain creates a socket in the file system that must be deleted by the caller

when it is no longer needed (usinglink (2)).
The rules used in name binding vary between communication domains.

SP-Klausur Manual-Auszug 2015-07-21 1

chdir(2) chdir(2)

NAME
chdir, fchdir — change working directory

SYNOPSIS
#include <unistd.h>

int chdir(const char * path);
int fchdir(int fd);

DESCRIPTION
chdir() changes the current working directory of the calling process to the directory speqifiil in
fchdir () is identical tachdir(); the only difference is that the directory isai as an pen file descriptor.

RETURN VALUE
On success, zero is returned. On errdris returned, an@rrnois set appropriately.

ERRORS
Depending on the file system, other errors can be returned. The more general eotwig fpare listed
below:

EACCES
Search permission is denied for one of the componemiathf (See alsgath_resolution(7).)

EFAULT
pathpoints outside your accessible address space.

EIO An 1/O error occurred.

ELOOP
Too mary symbolic links were encountered in resolvipath
ENAMETOOLONG
pathis too long.
ENOENT
The file does not exist.
ENOMEM
Insufficient kernel memory wawalable.
ENOTDIR

A component opathis not a directory.
The general errors fdchdir () are listed below:

EACCES
Search permission was denied on the directory opéd.on
EBADF
fdis not a valid file descriptor.
SEE ALSO

chroot(2), getcwd3), path_resolution(7)

SP-Klausur Manual-Auszug 2015-07-21 1

opendir/readdir(3) opendir/readdir(3)

NAME
opendir — open a directory / readdir — read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>
DIR *opendir(const char *name);

struct dirent *readdir(DIR * dir);
int readdir_r(DIR * dirp, struct dirent * entry, struct dirent ** result);

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the directong and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to lalr. It returns NULL on reaching the end-of-file or if an error occurred.

DESCRIPTION readdir_r
Thereaddir_r() function initializes the structure referenced egtry and storesa pointer to this structure
in result On successful return, the pointer returned@ssult will have the samevalue as the agument
entry. Upon reaching the end of the directory stream, this pointer wid the value NULL.

The data returned bseaddir() is overwritten by subsequent calls teaddir() for the same directory
stream.

Thedirentstructure is defined as follows:

struct dirent {

long d_ino; [* inode number */
off_t d_of; /* offset to the next dirent */
unsigned shord_reclen; /Mength of this record */
unsigned chard_type; [*type of file */
char d_name[256]; /* filename */
h
RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

readdir_r() returns Qf successful or an error number to indicate failure.

ERRORS
EACCES
Permission denied.

ENOENT
Directory does not exist, mameis an empty string.

ENOTDIR
nameis not a directory.

SP-Klausur Manual-Auszug 2015-07-21 1

dup(2) dup(2)
NAME
dup, dup2 - duplicate a file descriptor
SYNOPSIS
#include <unistd.h>
int dup(int oldfd);
int dup2(int oldfd, int newfd);
DESCRIPTION

dup() anddup2() create a copof the file descriptooldfd.
dup() uses the lowest-numbered unused descriptor for thelescriptor.

dup2() makesnewfdbe the cop of oldfd, closing newfdfirst if necessarybut note the following:
* |f oldfdis not a valid file descriptpthen the call fails, andewfdis not closed.

* If oldfdis a valid file descriptoand newfdhas the same value aklifd, thendup2() does nothing, and
returnsnewfd

After a successful return froaup() or dup2(), the old and ne file descriptors may be used interchange-
ably. They refer to the same open file description (epen(2)) and thus share file offset and file status
flags; for example, if the file offset is modified by usiseek2) on one of the descriptors, the offset is also
changed for the other.

The two descriptors do not share file descriptor flags (the close<emféag). Theclose-on-gec flag
(FD_CLOEXEC; seefcntl(2)) for the duplicate descriptor is off.

RETURN VALUE

dup() anddup2() return the ne descriptor or -1 if an eror occurred (in which caserrnois set appropri-
ately).

ERRORS
EBADF
oldfdisn’t an goen file descriptoior newfdis out of the allowed range for file descriptors.
EBUSY
(Linux only) This may be returned lsyup2() during a race condition withpen(2) anddup().
EINTR
Thedup?2() call was interrupted by a signal; s#gnal(7).
EMFILE
The process already has the maximum number of file descriptors open and tried to ogen a ne
one.
NOTES

The error returned bglup2() is different from that returned Hgntl(..., F_DUPFD, ...) whennewfdis out
of range. On some systemisp2() also sometimes returfdNVAL like F_DUPFD.

If newfdwas gpen, ay errors that would hee been reported atlosg2) time are lost.A careful program-
mer will not usedup2() without closingnewfdfirst.

SEE ALSO

closg?2), fentl (2), open(2)

SP-Klausur Manual-Auszug 2015-07-21 1

exec(2)

exec, execl, execv, execle, execve, eeclp, execvp — execute a file

SYNOPSIS

#include <unistd.h>
int execl(const char *path, const char *arg0, ..., const char *argn, char * /*NULL*/);
int execv(const char *path, char *const argv[]);

int execle(const char path,char *constarg0[], ..., mnst char *argn,
char * /[*NULL*/, char *const ervp[]);

int exec\e (const char *path, char *const argv[] char *constervp[]);
int execlp (const char *file, const char *arg0, ..., const char *argn, char * /*NULL*/);
int execvp (const char *ile, char *const argv[]);

DESCRIPTION

Each of the functions in thexecfamily overlays a ne process image on an old process. The pecess

image is constructed from an ordinaggecutable file. This file is either axecutable object file, or a file

of data for an interpretefThere can be no return from a successful call to one of these functions because
the calling process image iseplaid by the ne process image.

When a C program isxecuted, it is called as follows:
int main (int argc, char Cargv[], char Cenvp[]);

whereargc is the argument coungrgv is an array of character pointers to the arguments themselves, and
envpis an array of character pointers to the environment strings. As indieageds at least one, and the
first member of the array points to a string containing the name of the file.

The agumentsarggQ, ..., argn point to null-terminated character stringBhese strings constitute thegar
ment list @ailable to the ne process image Corventionally at leastrg0 should be presentThe arg0
argument points to a string that is the same@ath (or the last component @iath). Thelist of agument
strings is terminated by(ahar ()0 argument.

Theargv agument is an array of character pointers to null-terminated strings. These strings constitute the
argument list gailable to the ne process image. By ceention, argv must hae & least one membeand

it should point to a string that is the samepash (or its last component)Theargv argument is terminated

by a null pointer.

Thepath argument points to a path name that identifies thepnecess file.

Thefile algument points to the meprocess file.If file does not contain a slash charaates path prefix for
this file is obtained by a search of the directories passed RATieenvironment variable (sesviron(5)).

File descriptors open in the calling process remain open in theroeess.

Signals that are being caught by the calling process are set to the default disposition \n phecess
image (sessignal(3C)). Otherwisethe nav process image inherits the signal dispositions of the calling
process.

RETURN VALUES

If a function in theexecfamily returns to the calling process, an error has occurred; the return vallie is
anderrno is set to indicate the error.

SP-Klausur Manual-Auszug 2012-03-20 1

feof/ferror/fileno(3) feof/ferror/fileno(3)

NAME
clearerr feof, ferror fileno — check and reset stream status

SYNOPSIS
#include <stdio.h>

void clearerr(FILE * strean);
int feof(FILE * strean);

int ferror(FILE * strean);

int fileno(FILE * strean);

DESCRIPTION
The functionclearerr() clears the end-of-file and error indicators for the stream pointedstiveaym

The functionfeof() tests the end-of-file indicator for the stream pointed tetlam returning non-zero if
itis set. The end-of-file indicator can only be cleared by the functearerr().

The functionferror () tests the error indicator for the stream pointed tett®am returning non-zero i
set. Theerror indicator can only be reset by tearerr() function.

The functiorfileno() examines the argumestreamand returns its integer descriptor.
For non-locking counterparts, sealocked_stdiq(3).

ERRORS
These functions should not fail and do not set tktereal \ariable errno. (However, in casefileno()
detects that its argument is not a valid stream, it must return -1 aewirseto EBADF.)

CONFORMING TO
The functionsclearerr(), feof(), andferror () conform to C89 and C99.

SEE ALSO
open(2), fdopen(3), stdio(3), unlocked_stdiq3)

SP-Klausur Manual-Auszug 2015-07-21 1

fopen/fdopenf/fileno(3) fopen/fdopenffileno(3)

NAME
fopen, fdopen, fileno - stream open functions

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * path, const char *mode);
FILE *fdopen(int fildes const char *modg);
int fileno(FILE * strean);

DESCRIPTION
Thefopen function opens the file whose name is the string pointed athyand associates a stream with
it.

The agumentmodepoints to a string lggnning with one of the following sequences (Additional characters
may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.
r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned agiheitg
of the file.

w+ Open for reading and writing. The file is created if it does rist,eotherwise it is truncatedlhe
stream is positioned at the beginning of the file.

a Open for appending (writing at end of fileJhe file is created if it does natist. Thestream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it doegistot e
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descrifittes The modeof the stream
(one of the alues a+") must be compatible with the mode of the file descriptor
The file position indicator of the mestream is set to that belonging fitsles and the error and end-of-file
indicators are clearedModes "w" or "w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream creatdddyyenis closed. The result of applyifidopento a
shared memory object is undefined.

The functiorfileno() examines the argumestreamand returns its integer descriptor.

RETURN VALUE
Upon successful completioiopen, fdopen and freopen return aFILE pointer Otherwise,NULL is
returned and the global variatg@ernois set to indicate the error.

ERRORS
EINVAL
Themodeprovided tofopen, fdopen, or freopenwas invaid.

Thefopen, fdopen andfreopen functions may also fail and setrno for ary of the errors specified for the
routinemalloc(3).

Thefopen function may also fail and setrnofor ary of the errors specified for the routiopen(2).

Thefdopen function may also fail and setrno for ary of the errors specified for the routifentl (2).

SEE ALSO
open(2), fclosg3), fileno(3)

SP-Klausur Manual-Auszug 2015-07-21 1

getc/fgets/putc/fputs(3)

getc/fgets/putc/fputs(3)

fgetc, fgets, getc, getchdputc, fputs, putc, putchar input and output of characters and strings

SYNOPSIS

#include <stdio.h>

int fgetc(FILE * strean);
char *fgets(char *s, int
int getc(FILE * strean);
int getchar(void);

int fputc(int c, FILE * strean);

int fputs(const char *s, FILE * strean);
int putc(int ¢, FILE * strean);

int putchar(int c);

ze FILE * strean);

DESCRIPTION

fgeto() reads the next character frastreamand returns it as amnsigned har cast to arint, or EOF on
end of file or error.

getd) is equvalent tofgeto() except that it may be implemented as a macro whigluaesstreammore
than once.

getchan() is equvaent togetc(stdin).

fget) reads in at most one less tlerecharacters fronstreamand stores them into thefer pointed to
by s. Reading stops after &8OF or a nevline. If a rewline is read, it is stored into theiffer. A \0’ is
stored after the last character in the buffer.

fputc() writes the charactey, cast to arunsigned charto stream
fputs() writes the string to stream without its terminating null byte (\0").

putc() is equvalent tofputc() except that it may be implemented as a macro whieluatesstreammore
than once.

putchar(c); is equvalent toputc(c, stdou).

Calls to the functions described here can beethiwith each other and with calls to other output functions
from thestdiolibrary for the same output stream.

RETURN VALUE

fget), getd) andgetchan() return the character read aswansigned bar cast to arint or EOF on end of
file or error.

fgety) returnss on success, and NULL on error or when end of file occurs while no charaaterkeka
read. fputc(), putc() andputchar() return the character written as amsigned bar cast to annt or EOF
on error.

fputs() returns a nonmgative rumber on success, BOF on error.

SEE ALSO

read(2), write (2), ferror (3), fgetwc(3), fgetws(3), fopen(3), fread(3), fseek3), getline(3), getwchar(3),
scanf(3), ungetwq3), write (2), ferror (3), fopen(3), fputwc(3), fputws(3), fseek3), fwrite (3), getg3),
putwchar(3), scanf3), unlocked_stdiq3)

SP-Klausur Manual-Auszug 2015-07-21 1

socket(2) / ipv6(7)

socket(2) / ipv6(7)

NAME

ipv6, PF_INET6 — Linux IPv6 protocol implementation
SYNOPSIS

#include <sys/socket.h>

#include <netinet/in.h>

tcp6_soket = socket(PF_INET6, SOCK_STREAM, 0);

raw6_so&et = socket(PF_INET6, SOCK_RAN, protocol);

udp6_soket = socket(PF_INET6, SOCK_DGRAM, protocol);
DESCRIPTION

Linux 2.2 optionally implements the Internet Protoc@sion 6. This man page contains a description of
the IPv6 basic API as implemented by the Linux kernel and glibc 2.1. The interface is based on the BSD
sockets interface; seecke(7).

The IPv6 API aims to be mostly compatible with thé€7) v4 API. Only differences are described in this
man page.

To hind anAF_INET6 soclet to aiy process the local address should be copied frorm@aldr_anyvari-
able which hasn6_addrtype. Instatic initializationssNGADDR_ANY_INIT may also be used, which
expands to a constar@ression. Bottof them are in network order.

The IPv6 loopback address (::1) igidable in the globain6addr_loopbackvariable. For initializations
INGADDR_LOOPBACK_INIT should be used.

IPv4 connections can be handled with the v6 API by using the v4-mapped-on-v6 address type; thus a pro-
gram only needs only to support this API type to support both protocols. This is handled transparently by
the address handling functions in libc.

IPv4 and IPv6 share the local port spaghen you get an IPv4 connection or packet to a IPv6 socket its
source address will be mapped to v6 and it will be mapped to v6.

Address Format

NOTES

struct sockaddr_in6 {
uintl6_t sin6_damily; /* AF_INET6 */
uintl6_t sin6_port; /* port number */
uint32_t sin6_flavinfo; /* IPv6 flow information */
struct in6_addr sin6_addr; /* IPv6 address */
uint32_t sin6_scope_id* Scope ID (n&v in 2.4) */
h

struct in6_addr {
unsigned chars6_addr[16]; /1Pv6 address */
h

sin6_familyis always set toAF_INET6; sin6_portis the protocol port (sesin_portin ip(7)); sin6_flowinfo

is the IPv6 flov identifier;sin6_addris the 128-bit IPv6 addressin6_scope_ids an ID of depending of
on the scope of the address. It isvrie Linux 2.4. Linux only supports it for link scope addresses, in that
casesin6_scope_idontains the interface indéseenetdevicg7))

The sockaddr_in6structure is bigger than the genesiocckaddr Programs that assume that all address
types can be stored safely irstauct sokaddrneed to be changed to usteuct sokaddr_stoagefor that
instead.

SEE ALSO

cmsg3),ip(7)

SP-Klausur Manual-Auszug 2015-07-21 1

listen(2) listen(2)

NAME
listen - listen for connections on a socket
SYNOPSIS

#include <sys/types.h> /* See NOTES */
#include <sys/socket.h>

int listen(int sockfd int backlog;

DESCRIPTION
listen() marks the socket referred to bgckfdas a passe @cket, that is, as a socket that will be used to
accept incoming connection requests usiogep(2).

The sockfdamgument is a file descriptor that refers to a socket of 8p€K_STREAM or SOCK_SEQ-
PACKET .

The backlogagument defines the maximum length to which the queue of pending connectisnskio

may grav. If a connection request aves when the queue is full, the client may reeei error with an
indication of ECONNREFUSED or, if the underlying protocol supports retransmission, the request may be
ignored so that a later reattempt at connection succeeds.

RETURN VALUE
On success, zero is returned. On errdris eturned, an@rrnois set appropriately.

ERRORS
EADDRINUSE
Another socket is already listening on the same port.

EBADF
The argumensockfdis not a valid descriptor.

ENOTSOCK
The argumensockfdis not a socket.

NOTES
To accept connections, the following steps are performed:

1. Asocket is created withocke(2).

2. Thesoclet is bound to a local address ushbigd(2), so that other sockets may d@mnnec(2)ed
toit.

3. Awillingness to accept incoming connections and a queue limit for incoming connections are
specified witHisten().

4. Connectionsre accepted withccep(2).

If the backlogamgument is greater than the value/fmoc/sys/net/core/somaxcanthen it is silently trun-
cated to that value; the default value in this file is 128.

EXAMPLE
Seebind(2).

SEE ALSO
accep(2), bind(2), connec(2), socke(2), socke(7)

SP-Klausur Manual-Auszug 2015-07-21 1

printf(3) printf(3)

NAME
printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf — formatted output wasion

SYNOPSIS
#include <stdio.h>

int printf(const char * format, ...);

tf(FILE * stream const char *format,
t sprintf(char * str, const char *format, ...);
t snprintf(char * str, size_tsize const char *format, ...);

DESCRIPTION
The functions in therintf () family produce output according tof@matas described belo The func-
tions printf () and vprintf () write output tostdout the standard output strearprintf () and vfprintf ()
write output to the gien outputstream sprintf (), snprintf (), vsprintf () andvsnprintf () write to the char
acter stringstr.

The functionssnprintf () andvsnprintf () write at mostizebytes (including the trailing null byte (\0") to
str.

These eight functions write the output under the control fofraat string that specifies mosubsequent
amguments (or @uments accessed via the variable-length argument facilitedarf(3)) are cowerted for
output.

Return value
Upon successful return, these functions return the number of characters printed (not including the tr
"\O' used to end output to strings).

The functionssnprintf () andvsnprintf() do not write more thasizebytes (including the trailing "\0")If

the output was truncated due to this limit then the retahaevis the number of characters (not including
the trailing \0') which wuld have been written to the final string if enough space had beslalble. Thus,

a return value obizeor more means that the output was truncated. (See alse tredier NOTES.)

If an output error is encountered, ayaéve \alue is returned.

Format of the format string
The format string is a character string, beginning and ending in its initial shift statg, iTla@ format
string is composed of zero or more direesi ordinary characters (n&t), which are copied unchanged to
the output stream; and o@@nsion specifications, each of which results in fetching zero or more subsequent
amguments. Eacleorversion specification is introduced by the charaéterand ends with aonversion
specifier In between there may be (in this order) zero or nflags an gtional minimumfield width an
optionalprecisionand an optiondength modifier

The corversion specifier
A character that specifies the type of wasion to be applied. An example for a gersion specifier is:

s The const char *argument is gpected to be a pointer to an array of character type (pointer to a
string). Characterérom the array are written up toufbnot including) a terminating null byte
(\0"; if a precision is specified, no more than the number specified are wiitemrecision is
given, no null byte need be present; if the precision is not specified, or is greater than the size of
the arraythe array must contain a terminating null byte.

SEE ALSO
printf (1), asprintf(3), dprintf (3), scan{3), setlocalé3), wcrtomb(3), wprintf (3), localg5)

SP-Klausur Manual-Auszug 2015-07-21 1

open(2)

open, creat — open and possibly create a file or device

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathnameint flags);
int open(const char *pathnameint flags mode_tmods);

int creat(const char *pathnamemode_tmodsg);

DESCRIPTION

Given apathnamefor a file, open() returns a file descriptoa snall, nonneative integer for use in subse-
quent system callsgad(2), write (2), Iseek2), fcntl (2), etc.). The file descriptor returned by a successful
call will be the lowest-numbered file descriptor not currently open for the process.

By default, the ne file descriptor is set to remain open acrossxetvé?2) (i.e., theFD_CLOEXEC file
descriptor flag described fontl (2) ally disabled; th&®d_CLOEXEC flag, described belg can be
used to change this @efit). Thefile offset is set to the beginning of the file (f==ek2)).

A call to open() creates a e open file descriptionan entry in the system-wide table of open fileBhis
entry records the file offset and the file status flags (modifiable vfariti€2) F_SETFL operation). Afile
descriptor is a reference to one of these entries; this reference fisctethif pathnameis subsequently
removed or modified to refer to a different file. Thewepen file description is initially not shared with
ary other process, but sharing may arisefui (2).

The agumentflags must include one of the folling access modesO_RDONLY, O_WRONLY, or
O_RDWR. These request opening the file read-pwijte-only, or read/write, respeatély.

In addition, zero or more file creation flags and file status flags can be hitvdseflags Thefile cre-
ation flags are O_CREAT, O_EXCL, O_NOCTTY, and O_TRUNC. Thefile status flgs are all of the
remaining flags listed belo The distinction between theseawroups of flags is that the file status flags
can be retrieed and (in some cases) modified usiiegtl (2). Thefull list of file creation flags and file sta-
tus flags is as follows:

O_APPEND
The file is opened in append mode. Before emdte (2), the file ofset is positioned at the end of
the file, as if withsee2). O_APPEND may lead to corrupted files on NFS file systems if more
than one process appends data to a file at once. This is because NFS does not support appending
to a file, so the client kernel has to simulate it, whichtdaatbne without a race condition.

O_CREAT
If the file does not exist it will be created. The owner (user ID) of the file is set tof¢letivef
user ID of the process. The group ownership (group ID) is set either tdfebtvefgoup ID of
the process or to the group ID of the parent directory (depending on file system type and mount
options, and the mode of the parent directegg the mount optionissdgroupsand sysvgroups
described irmount(8)).

modespecifies the permissions to use in casevafile is created. This argument must be sup-
plied whenO_CREAT is specified irflags if O_CREAT is not specified, themodeis ignored.

The efective permissions are modified by the processhaskin the usual way: The permissions
of the created file arfgnode & “umask) Note that this mode only applies to future accesses of the
newly created file; theopen() call that creates a read-only file may well return a read/write file
descriptor.

The following symbolic constants are provided fuode

SP-Klausur Manual-Auszug 2015-07-21 1

open(2) open(2)

S_IRWXU
00700 user (file owner) has read, write aretate permission

S_IRWXG
00070 group has read, write ang@ite permission

S_IXGRP

00010 group hasxecute permission

S_IRWXO
00007 others he read, write andyecute permission

S_IXOTH

00001 others he exeute permission

O_TRUNC
If the file already xists and is a regular file and the open mode allows writing (1.6, RDWR
or O_WRONLY) it will be truncated to length Olf the file is a FIFO or terminal device file, the
O_TRUNC flag is ignored. Otherwise the effect@f TRUNC is unspecified.

RETURN VALUE
open() andcreat() return the ne file descriptaror —1 if an eror occurred (in which caserrno is set
appropriately).

ERRORS
EACCES

The requested access to the file is not allowed, or search permission is denied for one of the direc-

tories in the path prefix gfathname or the file did not exist yet and write access to the parent
directory is not allwed. (Seealsopath_resolution(7).)

EEXIST
pathnamealready exists an@_CREAT andO_EXCL were used.

EFAULT
pathnamepoints outside your accessible address space.

EINTR
While blocked waiting to complete an open of anshievice (e.g., a FIFO; seffo(7)), the call
was interrupted by a signal handler; stgnal(7).

EMFILE
The process already has the maximum number of files open.

ENAMETOOLONG
pathnamewas oo long.
ENFILE
The system limit on the total number of open files has been reached.
ENODEV
pathnameefers to a device special file and no corresponding dexists.e (Thisis a Linux ler-
nel bug; in this situatioBNXIO must be returned.)
ENOENT
O_CREAT is not set and the named file does naste Or, a drectory component ipathname
does not exist or is a dangling symbolic link.
SEE ALSO
chmod(2), chown(2), clos€2), dup(2), fentl(2), link (2), Iseek2), mknod(2), mmap(2), mount(2), ope-
nat(2), read(2), socke(2), stat(2), umask(2), unlink (2), write (2), fopen(3), fifo(7), path_resolution(7),
symlink(7)

SP-Klausur Manual-Auszug 2015-07-21 2

stat(2) stat(2)
NAME

stat, fstat, Istat — get file status
SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char *path, struct stat * buf);
int fstat(int fd, struct stat * buf);
int Istat(const char *path, struct stat * buf);

Feature Test Macro Requirements for glibc (se¢ure_test_macro$7)):

Istat(): _BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION

These functions return information about a file. No permissions are required on the filetitselfirbthe
case ofstat() andlstat() — execute (search) permission is required on all of the directoripaththat lead
to the file.

stat() stats the file pointed to Ipathand fills inbuf .

Istat() is identical tostat(), except that ipathis a symbolic link, then the link itself is stat-ed, not the file
that it refers to.

fstat() is identical tostat(), except that the file to be stat-ed is specified by the file desduptor
All of these system calls returrstatstructure, which contains the following fields:

struct stat {
dev_t st dev; /%D of device containing file */
ino_t st_ino; /*inode number */
mode_t st_mode; /protection */
nlink_t st_nlink; /*number of hard links */
uid_t [*user ID of owner */
gid_t I*group ID of owner */
dev_t st rde; /* device ID (if special file) */
off t st_size; /*total size, in bytes */
blksize_t st_blksize; /* blocksize for file system 1/0 */
blkent_t st_blocks; /Mumber of blocks allocated */
time_t st_atime;/* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

I8

Thest_defield describes the device on which thi

ile resides.
Thest_rdevfield describes the device that this file (inode) represents.

The st_sizefield gives the size of the file (if it is a regular file or a symbolic link) in bytes. The size of a
symlink is the length of the pathname it contains, without a trailing null byte.

The st_blocksfield indicates the number of blocks allocated to the file, 512-byte ufiitdis may be
smaller tharst_sizé512 when the file has holes.)

Thest_blksizdield gives the "preferred” blocksize for fédient file system 1/0. (Writing to a file in smaller
chunks may cause an inefficient read-modify-rewrite.)

SP-Klausur Manual-Auszug 2015-07-21 1

stat(2)

stat(2)

Not all of the Linux file systems implement all of the time fields. Some file system typgswalmting in
such a way that file accesses do not cause an updatesofdlimefield. (Seé'noatime" inmount(8).)

The fieldst_atimeis changed by file accesses, for exampleexscvé2), mknod(2), pipe(2), utime(2) and
read(2) (of more than zero bytes). Other routines, tik@ap(2), may or may not updagt_atime

The fieldst_mtimes changed by file modifications, for example,rhnod(2), truncate(2), utime(2) and
write (2) (of more than zero bytesMoreover, st_mtimeof a directory is changed by the creation or dele-
tion of files in that directory The st_mtimefield is not changed for changes irwaer, group, hard link
count, or mode.

The fieldst_ctimeis changed by writing or by setting inode information (i.evner, group
mode, etc.).

The following POSIX macros are defined to check the file type usirg_theoddield:

S_ISREG(m) isit a regular file?

S_ISDIR(m) directory?

S_ISCHR(m) charactedevice?

S_ISBLK(m) blockdevice?

S_ISFIFO(m) FIFO(named pipe)?

S_ISLNK(m) symboliclink? (Not in POSIX.1-1996.)

S ISSOCKm) soclet? (Not in POSIX.1-1996.)

RETURN VALUE

On success, zero is returned. On errdris returned, an@rrnois set appropriately.

ERRORS
EACCES
Search permission is denied for one of the directories in the path prefiattof (See also
path_resolution(7).)
EBADF
fdis bad.
EFAULT
Bad address.
ELOOP
Too mary symbolic links encountered while trarsing the path.
ENAMETOOLONG
File name too long.
ENOENT
A component of the pathathdoes not exist, or the path is an empty string.
ENOMEM
Out of memory (i.e., kernel memory).
ENOTDIR
A component of the path is not a directory.
SEE ALSO

acces§), chmod(2), chown(2), fstatat(2), readlink (2), utime(2), capabilities(7), symlink(7)

SP-Klausur Manual-Auszug 2015-07-21 2

sigaction(2) sigction(2)

NAME

sigaction — POSIX signal handling functions.

SYNOPSIS

#include <signal.h>

int sigaction(int signum const struct sigaction *act, struct sigaction *oldact);

DESCRIPTION

Thesigactionsystem call is used to change the action taken by a process on receipt of a specific signal.
signumspecifies the signal and can beg &alid signal excepBIGKILL andSIGSTOP.

If actis non—null, the ne action for signakignumis installed fromact. If oldactis non-null, the pndous
action is seed in oldact

Thesigactionstructure is defined as something like

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);
}

On some architectures a union igdlved - do not assign to bo#a_handlerandsa_sigaction

The sa_restorerelement is obsolete and should not be use@SIX does not specify sa_restorerele-
ment.

sa_handlerspecifies the action to be associated wignumand may beSIG_DFL for the defult action,
SIG_IGN to ignore this signal, or a pointer to a signal handling function.
sa_maslgives a mask of signals which should be blocked durimgcetion of the signal handletn addi-
tion, the signal which triggered the handler will be blocked, unlesSAh&lODEFER or SA_NOMASK
flags are used.
sa_flagsspecifies a set of flags which modify the babar of the signal handling process. It is formed by
the bitwise OR of zero or more of the following:
SA_NOCLDSTOP
If signumis SIGCHLD, do rot receve rotification when child processes stop (i.e., when
child processes reae ame of SIGSTOP, SIGTSTP, SIGTTIN or SIGTTOU).
SA_RESTART

Provide behaviour compatible with BSD signal semantics by making certain system calls
restartable across signals.

RETURN VALUES

sigactionreturns 0 on success and -1 on error.

ERRORS

EINVAL
An invalid signal was specified. This will also be generated if an attempt is made to change the
action forSIGKILL or SIGSTOP, which cannot be caught.

SEE ALSO

kill (1), kill (2), killpg (2), paus€?2), sigsetop$3),

SP-Klausur Manual-Auszug 2015-07-21 1

sigsuspend/sigprocmask(2) sigsuspend/sigprocmask(2)

NAME
sigprocmask — change and/or examine callgghal mask
sigsuspend - install a signal mask and suspend caller until signal

SYNOPSIS
#include <signal.h>

int sigprocmask(int how, const sigset_t set, sigset_t *ose);
int sigsuspend(const sigset_tsey;

DESCRIPTION sigprocmask
The sigprocmask() function is used toxamine and/or change the caltedgnal mask. If the value is
SIG_BLOCK, the set pointed to by thegamentsetis added to the current signal madkthe value is
SIG_UNBLOCK, the set pointed by thegumentsetis remaed from the current signal mask. If thalue
is SIG_SETMASK, the current signal mask is replaced by the set pointed to by ghmentset If the
argumenbsetis notNULL, the previous mask is stored in the space pointed twsbéy If the value of the
argumentsetis NULL, the valuehowis not significant and the callsrdgnal mask is unchanged; thus, the
call can be used to inquire about currently blocked signals.

If there are aypending unblocked signals after the calstgprocmask() at least one of those signals will
be delvered before the call tsigprocmask()returns.

It is not possible to block those signals that cannot be ignored this restriction is silently imposed by the sys-
tem. Seesigaction(2).

If sigprocmask()fails, the callers sgnal mask is not changed.
RETURN VALUES

On successigprocmask()returns0. On failure, it returns-1 and set®rrno to indicate the error.
ERRORS

sigprocmask()fails if any of the following is true:

EFAULT setor osetpoints to an illgd address.

EINVAL The value of théhowargument is not equal to one of the defined values.

DESCRIPTION sigsuspend
sigsuspend(yeplaces the calles’sgnal mask with the set of signals pointed to by tlierentsetand
then suspends the caller until getiy of a signal whose action is either teeeute a signal catching func-
tion or to terminate the process.

If the action is to terminate the procesgsuspend()does not returnlf the action is to xecute a signal
catching functionsigsuspend()returns after the signal catching function returns. On return, the signal
mask is restored to the set that existed before the cajgospend()
It is not possible to block those signals that cannot be ignoredsiggea(5)); this restriction is silently
posed by the system.
RETURN VALUES

Sincesigsuspend(suspends procesgeeution indefinitely there is no successful completion retuatue.

On failure, it returns —1 and seggno to indicate the error.
ERRORS

sigsuspend(fails if either of the following is true:

EFAULT setpoints to an illga address.
EINTR A signal is caught by the calling process and control is returned from the signal catching
function.
SEE ALSO

sigaction(2), sigsetop$3C),

SP-Klausur Manual-Auszug 2015-07-21 1

sigsetops(3C) sigsetops(3C)

NAME
sigsetops, sigemptyset, sigfillset, sigaddset, sigdelset, sigismember — manipulate sets of signals

SYNOPSIS
#include <signal.h>

int sigemptyset(sigset_t $ef);

int sigfillset(sigset_t *sef);

int sigaddset(sigset_t $et int signo);

int sigdelset(sigset_t $et, int signo);

int sigismember(sigset_t $et, int signo);

DESCRIPTION
These functions manipulagigset_tdata types, representing the set of signals supported by the implemen-
tation.

sigemptyset()initializes the set pointed to Isgtto exclude all signals defined by the system.
sigfillset()initializes the set pointed to Isgtto include all signals defined by the system.
sigaddset()adds the individual signal specified by the valusigiioto the set pointed to tset
sigdelset()deletes the individual signal specified by the valusigriofrom the set pointed to kset

sigismember()checks whether the signal specified by the valuggsfois a member of the set pointed to
by set

Any object of typesigset_tmust be initialized by applying eithasigemptyset()or sigdfillset() before
applying ay other operation.

RETURN VALUES
Upon successful completion, teegismember()function returns aalue of one if the specified signal is a
member of the specified set, or a value of 0 if it is not. Upon successful completion, the other functions
return a value of 0. Otherwise a value of —1 is returnedeam is set to indicate the error.

ERRORS
sigaddset() sigdelset() and sigismember()will fail if the following is true:

EINVAL The value of theignoargument is not a valid signal number.
sigfillset() will fail if the following is true:
EFAULT Thesetargument specifies anvilid address.

SEE ALSO
sigaction(2), sigpending2), sigprocmask2), sigsuspen@?), attributes(5), signal(5)

SP-Klausur Manual-Auszug 2013-07-23 1

waitpid(2) waitpid(2)

NAME
waitpid — wait for child process to change state

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int * stat_log int options;

DESCRIPTION
waitpid() suspends the calling process until one of its children changes state; if a child process changed
state prior to the call tevaitpid(), return is immediatepid specifies a set of child processes for which sta-
tus is requested.

If pidis equal tapid_t)-1, satus is requested for aphild process.

If pid is greater tharfpid_t)0, it specifies the proces® of the child process for which status is
requested.

If pid is equal tapid_t)0 status is requested foryachild process whose process grabgs equal
to that of the calling process.
If pid is less thar(pid_t)-1, status is requested for yarhild process whose process grdDpis
equal to the absolute value .

If waitpid() returns because the status of a child processiialale, then that status may besleiated with

the macros defined hystat(5). If the calling process had specified a non-zero valigtadf log the status
of the child process will be stored in the location pointed tstaty loc

The optionsargument is constructed from the bitwise inckesDR of zero or more of the folleing flags,
defined in the headesys/wait.h>

WCONTINUED The status of gncontinued child process specified pig, whose status has not
been reported since it continued, is also reported to the calling process.

WNOHANG waitpid() will not suspend xecution of the calling process if status is not imme-
diately available for one of the child processes specifiegbioly

WNOWAIT Keep the process whose status is returnedtan locin a waitable state. The
process may be waited for again with identical results.

RETURN VALUES
If waitpid() returns because the status of a child processiiglale, this function returns a value equal to
the procestD of the child process for which status is reportédwaitpid() returns due to the deéry of a
signal to the calling processy is returned an@rrno is set toEINTR. If this function was iwoked with
WNOHANG set inoptions it has at least one child process specifiegildyfor which status is notailable,
and status is notvailable for ary process specified bgid, O is returned. Otherwise,~1 is returned, and
errno is set to indicate the error.

ERRORS
waitpid() will fail if one or more of the following is true:

ECHILD The process or process group specifieghiblydoes not exist or is not a child of the call-
ing process or can ner be in he states specified lmptions
EINTR waitpid() was interrupted due to the receipt of a signal sent by the calling process.
EINVAL An invaid value was specified faptions.
SEE ALSO

exed?2), exit(2), fork (2), sigaction(2), wstat(5)

SP-Klausur Manual-Auszug 2015-07-21 1

