
accept(2)
accept(2)

N
A

M
E

accept −
 accept a connection on a socket

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/socket.h>

int accept(ints,struct sockaddr *a
d

d
r,int *

a
d

d
rle

n);

D
E

S
C

R
IP

T
IO

N
T

he argum
ents

is a socket that has been created w
ith

socket(3N
) and bound to an address w

ith
bind

(3N
),

and that is listening for connections after a call to
listen(3N

).
T

heaccept()function extracts the first con-
nection on the queue of pending connections, creates a ne

w
socket w

ith the properties ofs,
and allocates a

new
file descriptor,n

s,for the socket. Ifno pending connections are present on the queue and the socket is
not m

arked as non-blocking,accept()blocks the caller until a connection is present.
If the socket is

m
arked as non-blocking and no pending connections are present on the queue,

accept()returns an error as
described below.

The
accept()function uses thenetconfig(4) file to determ

ine theS
T

R
E

A
M

S
device file

nam
e associated w

iths.
T

his is the device on w
hich the connect indication w

ill be accepted.
T

he accepted
socket,n

s,is
used to read and w

rite data to and from
 the socket that connected to

n
s;itis

not used to accept
m

ore connections.
T

he original socket (
s)

rem
ains open for accepting further connections.

T
he argum

enta
d

d
r

is a result param
eter that is filled in w

ith the address of the connecting entity as it is
know

n to the com
m

unications layer
.

T
he exact form

at of thead
d

rparam
eter is determ

ined by the dom
ain

in w
hich the com

m
unication occurs.

T
he argum

enta
d

d
rle

n
is a value-result param

eter
.

Initially,
it

contains the am
ount of space pointed to by

a
d

d
r;on

return it contains the length in bytes of the address returned.

T
he

accept()function is used w
ith connection-based socket types, currently w

ith
S

O
C

K
_S

T
R

E
A

M
.

It is possible toselect(3C
) orpoll(2) a socket for the purpose of anaccept()by selecting or polling it for a

read.
H

ow
ever, this w

ill only indicate w
hen a connect indication is pending; it is still necessary to call

accept().

R
E

T
U

R
N

 VA
LU

E
S

T
he

accept()function returns−
1

on error.
Ifitsucceeds, it returns a non-ne

gative integer that is a descrip-
tor for the accepted socket.

E
R

R
O

R
Saccept()w

ill fail if:

E
B

A
D

F
T

he descriptor is invalid.

E
IN

T
R

T
he accept attem

pt w
as interrupted by the deli

very of a signal.

E
M

F
ILE

T
he per-process descriptor table is full.

E
N

O
D

E
V

T
he protocol fam

ily and type corresponding toscould not be found in thenetcon-
fig

file.

E
N

O
M

E
M

T
here w

as insufficient user m
em

ory a
vailable to com

plete the operation.

E
P

R
O

T O
A

protocol error has occurred; for exam
ple, the

S
T

R
E

A
M

S
protocol stack has not

been initialized or the connection has already been released.

E
W

O
U

LD
B

LO
C

K
T

he socket is m
arked as non-blocking and no connections are present to be

accepted.

S
E

E
 A

LS
Opoll(2),bind

(3N
),connect(3N

),listen(3N
),select(3C

),socket(3N
),netconfig(4),attributes(5),socket(5)

S
P

-K
lausur M

anual-A
uszug

2015-07-21
1

bind(2)
bind(2)

N
A

M
E

bind −
 bind a nam

e to a socket

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/socket.h>

int bind(int
s,const struct sockaddr *n

a
m

e,int
n

a
m

e
le

n);

D
E

S
C

R
IP

T
IO

N
bind()

assigns a nam
e to an unnam

ed sock
et. W

hena
socket is created w

ithsocket(3N
), it exists in a nam

e
space (address fam

ily) but has no nam
e assigned.

bind()
requests that the nam

e pointed to by
n

a
m

e
be

assigned to the socket.

R
E

T
U

R
N

 VA
LU

E
S

If the bind is successful,0is returned.A
return value of−

1
indicates an error,w

hich is further specified in
the globalerrno

.

E
R

R
O

R
ST

he
bind()

call w
ill fail if:

E
A

C
C

E
S

T
he requested address is protected and the current user has inadequate perm

ission
to access it.

E
A

D
D

R
IN

U
S

E
T

he specified address is already in use.

E
A

D
D

R
N

O
TA

VA
IL

T
he specified address is not a

vailable on the local m
achine.

E
B

A
D

F
s

is not a valid descriptor.

E
IN

VA
L

n
a

m
e

le
nis not the size of a valid address for the specified address fam

ily.

E
IN

VA
L

T
he socket is already bound to an address.

E
N

O
S

R
T

here w
ere insufficientST

R
E

A
M

S
resources for the operation to com

plete.

E
N

O
T

S
O

C
K

s
is a descriptor for a file, not a socket.

T
he follow

ing errors are specific to binding nam
es in the

U
N

IX
dom

ain:

E
A

C
C

E
S

S
earch perm

ission is denied for a com
ponent of the path prefix of the pathnam

e in
n

a
m

e.

E
IO

A
n I/O

 error occurred w
hile m

aking the directory entry or allocating the inode.

E
IS

D
IR

A
null pathnam

e w
as specified.

E
LO

O
P

Too
m

any
sym

bolic links w
ere encountered in translating the pathnam

e in
n

a
m

e.

E
N

O
E

N
T

A
com

ponent of the path prefix of the pathnam
e in
n

a
m

edoes not exist.

E
N

O
T

D
IR

A
com

ponent of the path prefix of the pathnam
e in
n

a
m

eis not a directory.

E
R

O
F

S
T

he inode w
ould reside on a read-only file system

.

S
E

E
 A

LS
Ounlink

(2),socket(3N
),attributes(5),socket(5)

N
O

T
E

S
B

inding a nam
e in theU

N
IX

dom
ain creates a socket in the file system

 that m
ust be deleted by the caller

w
hen it is no longer needed (using

unlink
(2)).

T
he rules used in nam

e binding vary betw
een com

m
unication dom

ains.

S
P

-K
lausur M

anual-A
uszug

2015-07-21
1

chdir(2)
chdir(2)

N
A

M
E

chdir,fchdir −
 change w

orking directory

S
Y

N
O

P
S

IS#include <
unistd.h>

int chdir(const char *
p

a
th);

int fchdir(int
fd

);

D
E

S
C

R
IP

T
IO

N
chdir() changes the current w

orking directory of the calling process to the directory specified in
p

a
th.

fchdir() is identical tochdir(); the only difference is that the directory is gi
ven

as
an

open file descriptor.

R
E

T
U

R
N

 VA
LU

E
O

n success, zero is returned.
O

n error
,−

1
is

returned, ande
rrn

o
is set appropriately.

E
R

R
O

R
SD

epending on the file system
, other errors can be returned.

T
he m

ore general errors for
chdir() are listed

below
:

E
A

C
C

E
SS

earch perm
ission is denied for one of the com

ponents of
p

a
th.

(S
ee alsopath_resolution(7).)

E
FA

U
LT

p
a

th
points outside your accessible address space.

E
IO

A
n I/O

 error occurred.

E
LO

O
P

Too
m

any
sym

bolic links w
ere encountered in resolving

p
a

th.

E
N

A
M

E
T

O
O

LO
N

G
p

a
th

is too long.

E
N

O
E

N
TT

he file does not exist.

E
N

O
M

E
MInsufficient kernel m

em
ory w

as a
vailable.

E
N

O
T

D
IRA

com
ponent ofp

a
th

is not a directory.

T
he general errors forfchdir() are listed below

:

E
A

C
C

E
SS

earch perm
ission w

as denied on the directory open on
fd

.

E
B

A
D

F
fd

is not a valid file descriptor.

S
E

E
 A

LS
Ochroot(2),getcw

d(3),path_resolution(7)

S
P

-K
lausur M

anual-A
uszug

2015-07-21
1

opendir/readdir(3)
opendir/readdir(3)

N
A

M
E

opendir −
 open a directory / readdir −

 read a directory

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
dirent.h>

D
IR

 *opendir(const char *n
a

m
e);

struct dirent *readdir(D
IR

 *
d

ir);
int readdir_r(D

IR
 *

d
irp,struct dirent *

e
n

try,struct dirent **
resu

lt);

D
E

S
C

R
IP

T
IO

N
 opendir

T
he

opendir()
function opens a directory stream

 corresponding to the directory
n

a
m

e,and returns a pointer
to the directory stream

.
T

he stream
 is positioned at the first entry in the directory.

R
E

T
U

R
N

 VA
LU

E
T

he
opendir()

function returns a pointer to the directory stream
 or N

U
LL if an error occurred.

D
E

S
C

R
IP

T
IO

N
 readdir

T
he

readdir()
function returns a pointer to a dirent structure representing the next directory entry in the

directory stream
 pointed to bydir.

Itreturns N
U

LL on reaching the end-of-file or if an error occurred.

D
E

S
C

R
IP

T
IO

N
 readdir_r

T
he

readdir_r()
function initializes the structure referenced by

e
n

try
and storesa

pointer to this structure
in

resu
lt.

O
n

successful return, the pointer returned at
*re

su
ltw

ill have the sam
evalue as

the
argum

ent
e

n
try.U

pon reaching the end of the directory stream
, this pointer w

ill ha
ve the value N

U
LL.

T
he data returned byreaddir()

is overw
ritten by subsequent calls toreaddir()

for the
sam

e
directory

stream
.

T
he

d
ire

n
tstructure is defined as follow

s:

struct dirent {
long

d_ino;
/* inode num

ber */
off_t

d_off;
/*

offset to the next dirent */
unsigned shortd_reclen;

/*length of this record */
unsigned chard_type;

/*type of file */
char

d_nam
e[256];/* filenam

e */
};

R
E

T
U

R
N

 VA
LU

E
T

he
readdir()

function returns a pointer to a dirent structure, or N
U

LL if an error occurs or end-of-file is
reached.

readdir_r()
returns 0if successful or an error num

ber to indicate failure.

E
R

R
O

R
SE

A
C

C
E

SP
erm

ission denied.

E
N

O
E

N
TD

irectory does not exist, orna
m

eis an em
pty string.

E
N

O
T

D
IRn

a
m

eis not a directory.

S
P

-K
lausur M

anual-A
uszug

2015-07-21
1

dup(2)
dup(2)

N
A

M
E

dup, dup2 −
 duplicate a file descriptor

S
Y

N
O

P
S

IS#include <
unistd.h>

int dup(int
o

ld
fd);

int dup2(int
o

ld
fd,int

n
ew

fd);

D
E

S
C

R
IP

T
IO

N
dup() anddup2() create a copyofthe file descriptorold

fd.

dup() uses the low
est-num

bered unused descriptor for the ne
w

descriptor.

dup2() m
akesn

ew
fd

be the copy
of

o
ld

fd,closing
n

ew
fdfirst if necessary,but note the follow

ing:

*
If

o
ld

fd
is not a valid file descriptor

,then the call fails, andnew
fdis not closed.

*
If

o
ld

fd
is a valid file descriptor,and

n
ew

fd
has the sam

e value as
o

ld
fd,

then
dup2() does nothing, and

returnsn
ew

fd.

A
fter a successful return fromdup() ordup2(), the old and new

file descriptors m
ay be used interchange-

ably.
T

hey
refer to the sam

e open file description (see
open(2)) and thus share file offset and file status

flags; for exam
ple, if the file offset is m

odified by using
lseek(2) on one of the descriptors, the offset is also

changed for the other.

T
he two

descriptors do not share file descriptor flags (the close-on-e
xec

flag).
T

he
close-on-exec

flag
(F

D
_C

LO
E

X
E

C
;see

fcntl(2)) for the duplicate descriptor is off.

R
E

T
U

R
N

 VA
LU

E
dup() anddup2() return the new

descriptor,or
−

1
ifan

error occurred (in w
hich case,errn

o
is set appropri-

ately).

E
R

R
O

R
SE

B
A

D
F

o
ld

fd
isn’tan

open file descriptor,or
n

ew
fdis out of the allow

ed range for file descriptors.

E
B

U
S

Y
(Linux only) T

his m
ay be returned bydup2() during a race condition w

ithopen(2) anddup().

E
IN

T
R

T
he

dup2() call w
as interrupted by a signal; see

signal(7).

E
M

F
ILE

T
he process already has the m

axim
um

 num
ber of file descriptors open and tried to open a ne

w
one.

N
O

T
E

S
T

he error returned bydup2() is different from
 that returned byfcntl(...,F

_D
U

P
F

D
,

...)
w

hen
n

ew
fd

is out
of range.

O
n som

e system
s

dup2() also som
etim

es returnsEIN
VA

L
like

F
_D

U
P

F
D

.

If
n

ew
fd

w
as

open, any
errors that w

ould have been reported atclose(2) tim
e are lost.A

careful program
-

m
er w

ill not usedup2() w
ithout closingn

ew
fdfirst.

S
E

E
 A

LS
Oclose(2),fcntl(2),open(2)

S
P

-K
lausur M

anual-A
uszug

2015-07-21
1

exec(2)
exec(2)

N
A

M
E

exec, execl, execv,execle, execve, execlp, execvp −
 execute a file

S
Y

N
O

P
S

IS#include <
unistd.h>

int execl(const char *p
a

th,const char *a
rg

0,
...,const char *a

rg
n,char *

/*N
U

LL
*/);

int execv(const char *p
a

th,char *consta
rg

v[]);

int execle(const char *p
a

th,char *consta
rg

0
[],

... , const char *a
rg

n,
char *

/*N
U

LL
*/,char *conste

nvp
[]);

int execve
(const char *p

a
th,char *consta

rg
v[]

char *conste
nvp

[]);

int execlp (const char *file,const char *a
rg

0,
...,const char *a

rg
n,char *

/*N
U

LL
*/);

int execvp (const char *file,char *consta
rg

v[]);

D
E

S
C

R
IP

T
IO

N
E

ach of the functions in theexecfam
ily overlays a new

process im
age on an old process.

T
he ne
w

process
im

age is constructed from
 an ordinary

,
executable file.

T
his file is either an e

xecutable object file, or a file
of data for an interpreter

.
T

here can be no return from
 a successful call to one of these functions because

the calling process im
age is o

verlaid by the new
process im

age.

W
hen a C

 program
 is executed, it is called as follow

s:

int m
ain (int argc, char∗argv[], char∗envp[]);

w
here

a
rg

c
is the argum

ent count,arg
v

is an array of character pointers to the argum
ents them

selves, and
e

nvp
is an array of character pointers to the environm

ent strings.
A

s indicated,
a

rg
c

is at least one, and the
first m

em
ber of the array points to a string containing the nam

e of the file.

T
he argum

entsa
rg

0,
...,a

rg
n

point to null-term
inated character strings.

T
hese strings constitute the ar

gu-
m

ent list available to the new
process im

age.C
onventionally at leasta

rg
0

should be present.The
a

rg
0

argum
ent points to a string that is the sam

e as
p

a
th

(or the last com
ponent ofpa

th).
T

he
list of argum

ent
strings is term

inated by a(char∗)0
argum

ent.

T
he

a
rg

v
argum

ent is an array of character pointers to null-term
inated strings.

T
hese strings constitute the

argum
ent list available to the new

process im
age.

B
y convention,a

rg
v

m
ust have atleast one m

em
ber
,and

it should point to a string that is the sam
e as
p

a
th

(or its last com
ponent).The

a
rg

v
argum

ent is term
inated

by a null pointer.

T
he

p
a

th
argum

ent points to a path nam
e that identifies the ne

w
process file.

T
he

file
argum

ent points to the newprocess file.If
file

does not contain a slash character
,the path prefix for

this file is obtained by a search of the directories passed in the
P

AT
H

environm
ent variable (seeenviron(5)).

F
ile descriptors open in the calling process rem

ain open in the ne
w

process.

S
ignals that are being caught by the calling process are set to the default disposition in the ne

w
process

im
age (seesignal(3C

)).
O

therw
ise,the new

process im
age inherits the signal dispositions of the calling

process.

R
E

T
U

R
N

 VA
LU

E
S

If a function in theexecfam
ily returns to the calling process, an error has occurred; the return value is

−
1

and
errno

is set to indicate the error.

S
P

-K
lausur M

anual-A
uszug

2012-03-20
1

feof/ferror/fileno(3)
feof/ferror/fileno(3)

N
A

M
E

clearerr,feof, ferror,fileno −
 check and reset stream

 status

S
Y

N
O

P
S

IS#include <
stdio.h>

void clearerr(F
ILE

 *
stre

a
m);

int feof(F
ILE

 *
stre

a
m);

int ferror(F
ILE

 *
stre

a
m);

int fileno(F
ILE

 *
stre

a
m);

D
E

S
C

R
IP

T
IO

N
T

he functionclearerr() clears the end-of-file and error indicators for the stream
 pointed to by

stre
a

m.

T
he functionfeof() tests the end-of-file indicator for the stream

 pointed to by
stre

a
m,

returning non-zero if
it is set.

T
he end-of-file indicator can only be cleared by the function

clearerr().

T
he functionferror() tests the error indicator for the stream

 pointed to by
stre

a
m,returning non-zero if it is

set. T
heerror indicator can only be reset by the

clearerr() function.

T
he functionfileno() exam

ines the argum
ent
stre

a
m

and returns its integer descriptor.

F
or

non-locking counterparts, seeunlocked_stdio(3).

E
R

R
O

R
ST

hese functions should not fail and do not set the e
xternal variable

e
rrn

o.
(H

ow
ever, in

case
fileno()

detects that its argum
ent is not a valid stream

, it m
ust return −

1 and set
e

rrn
o

to
E

B
A

D
F

.)

C
O

N
F

O
R

M
IN

G
 T

O
T

he functionsclearerr(),feof(), andferror() conform
 to C

89 and C
99.

S
E

E
 A

LS
Oopen(2),fdopen(3),stdio(3),unlocked_stdio(3)

S
P

-K
lausur M

anual-A
uszug

2015-07-21
1

fopen/fdopen/fileno(3)
fopen/fdopen/fileno(3)

N
A

M
E

fopen, fdopen, fileno −
 stream

 open functions

S
Y

N
O

P
S

IS#include <
stdio.h>

F
ILE

 *fopen(const char *
p

a
th,const char *m

o
d

e);
F

ILE
 *fdopen(int

fild
e

s,const char *m
o

d
e);

int fileno(F
ILE

 *
stre

a
m);

D
E

S
C

R
IP

T
IO

N
T

he
fopen

function opens the file w
hose nam

e is the string pointed to by
p

a
th

and associates a stream
 w

ith
it.T

he argum
entm

o
d

epoints to a string beginning w
ith one of the follow

ing sequences (A
dditional characters

m
ay follow

these sequences.):

r
O

pen text file for reading.
T

he stream
 is positioned at the beginning of the file.

r+
O

pen for reading and w
riting.

T
he stream

 is positioned at the beginning of the file.

w
T

runcate file to zero length or create text file for w
riting.

T
he stream

 is positioned at the be
ginning

of the file.

w
+

O
pen for reading and w

riting.
T

he file is created if it does not e
xist, otherw

ise it is truncated.The
stream

 is positioned at the beginning of the file.

a
O

pen for appending (w
riting at end of file).The file is created if it does not e

xist.
T

he
stream

 is
positioned at the end of the file.

a+
O

pen for reading and appending (w
riting at end of file).

T
he file is created if it does not e

xist.
T

he stream
 is positioned at the end of the file.

T
he

fdopen
function associates a stream

 w
ith the existing file descriptor

,
fild

e
s.

T
he

m
o

d
e

of the stream
(one of the values "r", "r+

", "w
", "w

+
", "a", "a+

") m
ust be com

patible w
ith the m

ode of the file descriptor
.

T
he file position indicator of the ne

w
stream

 is set to that belonging tofild
e

s,
and the error and end-of-file

indicators are cleared.M
odes "w

" or "w
+

" do not cause truncation of the file.
T

he file descriptor is not
dup’ed, and w

ill be closed w
hen the stream

 created by
fdopen

is closed.
T

he result of applyingfdopen
to a

shared m
em

ory object is undefined.

T
he functionfileno() exam

ines the argum
ent
stre

a
m

and returns its integer descriptor.

R
E

T
U

R
N

 VA
LU

E
U

pon successful com
pletionfopen,

fdopen
and

freopen
return a

F
ILE

pointer.
O

therw
ise,N

U
LL

is
returned and the global variableerrn

o
is set to indicate the error.

E
R

R
O

R
SE

IN
VA

L
T

he
m

o
d

eprovided tofopen,fdopen,or
freopen

w
as

inv alid.

T
he

fopen,fdopen
and

freopen
functions m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the

routine
m

alloc(3).

T
he

fopen
function m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the routine

open(2).

T
he

fdopen
function m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the routine

fcntl(2).

S
E

E
 A

LS
Oopen(2),fclose(3),fileno(3)

S
P

-K
lausur M

anual-A
uszug

2015-07-21
1

getc/fgets/putc/fputs(3)
getc/fgets/putc/fputs(3)

N
A

M
E

fgetc, fgets, getc, getchar
,fputc, fputs, putc, putchar−

input and output of characters and strings

S
Y

N
O

P
S

IS#include <
stdio.h>

int fgetc(F
ILE

 *
stre

a
m);

char *fgets(char *s,int
size,F

ILE
 *

stre
a

m);
int getc(F

ILE
 *

stre
a

m);
int getchar(void);
int fputc(int

c,F
ILE

 *
stre

a
m);

int fputs(const char *s,F
ILE

 *
stre

a
m);

int putc(int
c,F

ILE
 *

stre
a

m);
int putchar(int

c);

D
E

S
C

R
IP

T
IO

N
fgetc() reads the next character fromstre

a
m

and returns it as anun
sig

n
e

d
 cha

r
cast to anin

t,
or

E
O

F
on

end of file or error.

getc() is equivalent to
fgetc() except that it m

ay be im
plem

ented as a m
acro w

hich e
valuatesstre

a
m

m
ore

than once.

getchar() is equivalent to
getc(std

in).

fgets() reads in at m
ost one less than

size
characters fromstre

a
m

and stores them
 into the b

uffer pointed to
by

s.
R

eading stops after anEO
F

or a new
line.

If
a

new
line is read, it is stored into the b

uffer.
A

’\0’
is

stored after the last character in the buffer.

fputc() w
rites the characterc,cast to anu

n
sig

n
e

d
 ch

a
r,to

stre
a

m.

fputs() w
rites the strings

to
stre

a
m,w

ithout its term
inating null byte ('\0').

putc() is equivalent to
fputc() except that it m

ay be im
plem

ented as a m
acro w

hich e
valuatesstre

a
m

m
ore

than once.

putchar(c);
is equivalent to

putc(c,std
o

u
t).

C
alls to the functions described here can be m

ix
ed w

ith each other and w
ith calls to other output functions

from
 the

std
io

library for the sam
e output stream

.

R
E

T
U

R
N

 VA
LU

E
fgetc(),getc() and

getchar() return the character read as an
u

n
sig

n
e

d
 cha

r
cast to anin

t
orE

O
F

on end of
file or error.

fgets() returnss
on success, and N

U
LL on error or w

hen end of file occurs w
hile no characters ha

ve been
read.fputc(),putc() and

putchar() return the character w
ritten as an

u
n

sig
n

e
d

 cha
r

cast to anin
t

orE
O

F
on error.

fputs() returns a nonnegative num
ber on success, or

E
O

F
on error.

S
E

E
 A

LS
Oread(2),w

rite
(2),ferror(3),fgetw

c(3),fgetw
s(3),fopen(3),fread(3),fseek(3),getline(3),getw

char(3),
scanf(3),

ungetw
c(3),

w
rite

(2),
ferror(3),

fopen(3),
fputw

c(3),
fputw

s(3),
fseek(3),

fw
rite

(3),
gets(3),

putw
char(3),scanf(3),unlocked_stdio(3)

S
P

-K
lausur M

anual-A
uszug

2015-07-21
1

socket(2) / ipv6(7)
socket(2) / ipv6(7)

N
A

M
E

ipv6, P
F

_IN
E

T
6 −

 Linux IP
v6 protocol im

plem
entation

S
Y

N
O

P
S

IS#include <
sys/socket.h>

#include <
netinet/in.h>

tcp
6

_
so

cket
=

socket(P
F

_IN
E

T
6, S

O
C

K
_S

T
R

E
A

M
, 0);

ra
w

6
_

so
cket

=
socket(P

F
_IN

E
T

6, S
O

C
K

_R
AW

,
p

ro
to

co
l);

u
d

p
6

_
so

cket
=

socket(P
F

_IN
E

T
6, S

O
C

K
_D

G
R

A
M

,
p

ro
to

co
l);

D
E

S
C

R
IP

T
IO

N
Linux 2.2 optionally im

plem
ents the Internet P

rotocol, v
ersion 6.

T
his m

an page contains a description of
the IP

v6 basic A
P

I as im
plem

ented by the Linux kernel and glibc 2.1.
T

he interface is based on the B
S

D
sockets interface; seesocket(7).

T
he IP

v6 A
P

I aim
s to be m

ostly com
patible w

ith the
ip

(7) v4 A
P

I.
O

nly differences are described in this
m

an page.

To bind anA
F

_IN
E

T
6

socket to any
process the local address should be copied from

 the
in

6
a

d
d

r_
a

n
yvari-

able w
hich hasin

6
_

a
d

d
rtype.

In
static initializationsIN

6A
D

D
R

_A
N

Y
_IN

IT
m

ay also be used, w
hich

expands to a constant e
xpression. B

othof them
 are in netw

ork order.

T
he IP

v6 loopback address (::1) is a
vailable in the globalin

6
a

d
d

r_
lo

o
p

b
a

ckvariable.
For initializations

IN
6A

D
D

R
_LO

O
P

B
A

C
K

_IN
IT

should be used.

IP
v4 connections can be handled w

ith the v6 A
P

I by using the v4-m
apped-on-v6 address type; thus a pro-

gram
 only needs only to support this A

P
I type to support both protocols.

T
his is handled transparently by

the address handling functions in libc.

IP
v4 and IP

v6 share the local port space.
W

hen you get an IP
v4 connection or packet to a IP

v6 socket its
source address w

ill be m
apped to v6 and it w

ill be m
apped to v6.

A
ddress F

orm
at

struct sockaddr_in6 {
uint16_t

sin6_fam
ily;

/*
A

F
_IN

E
T

6 */
uint16_t

sin6_port;
/* port num

ber */
uint32_t

sin6_flow
info; /* IP

v6 flow
inform

ation */
struct in6_addr sin6_addr;

/* IP
v6 address */

uint32_t
sin6_scope_id;/* S

cope ID
 (new

in
2.4) */

};struct in6_addr {
unsigned chars6_addr[16];

/*IP
v6 address */

};

sin
6

_
fa

m
ilyis alw

ays set toA
F

_IN
E

T
6

;sin
6

_
p

o
rtis the protocol port (seesin

_
p

o
rtin

ip
(7));sin

6
_

flo
w

in
fo

is the IP
v6 flow

identifier;sin
6

_
a

d
d

ris the 128-bit IP
v6 address.sin

6
_

sco
p

e
_

idis an ID
 of depending of

on the scope of the address.
It is ne

w
in

L
inux 2.4.

Linux only supports it for link scope addresses, in that
casesin

6
_

sco
p

e
_

idcontains the interface inde
x

(seenetdevice(7))

N
O

T
E

S
T

he
so

cka
d

d
r_

in
6structure is bigger than the generic

so
cka

d
d

r.
Program

s that assum
e that all address

types can be stored safely in a
stru

ct so
cka

d
d

rneed to be changed to use
stru

ct so
cka

d
d

r_
sto

rage
for that

instead.

S
E

E
 A

LS
Ocm

sg(3),ip
(7)

S
P

-K
lausur M

anual-A
uszug

2015-07-21
1

listen(2)
listen(2)

N
A

M
E

listen −
 listen for connections on a socket

S
Y

N
O

P
S

IS#include <
sys/types.h>

/* S
ee N

O
T

E
S

 */
#include <

sys/socket.h>

int listen(int
so

ckfd,int
b

a
cklog);

D
E

S
C

R
IP

T
IO

N
listen() m

arks the socket referred to by
so

ckfdas a passive socket, that is, as a socket that w
ill be used to

accept incom
ing connection requests using

accept(2).

T
he

so
ckfdargum

ent is a file descriptor that refers to a socket of type
S

O
C

K
_S

T
R

E
A

M
orS

O
C

K
_S

E
Q

-
P

A
 C

K
E

T
.

T
he

b
a

cklog
argum

ent defines the m
axim

um
 length to w

hich the queue of pending connections for
so

ckfd
m

ay grow
.

If
a

connection request arri
ves

w
hen the queue is full, the client m

ay recei
ve an

error w
ith an

indication ofE
C

O
N

N
R

E
F

U
S

E
D

or,ifthe underlying protocol supports retransm
ission, the request m

ay be
ignored so that a later reattem

pt at connection succeeds.

R
E

T
U

R
N

 VA
LU

E
O

n success, zero is returned.
O

n error
,−

1
is

returned, ande
rrn

o
is set appropriately.

E
R

R
O

R
SE

A
D

D
R

IN
U

S
E

A
nother socket is already listening on the sam

e port.

E
B

A
D

F
T

he argum
entso

ckfdis not a valid descriptor.

E
N

O
T

S
O

C
K

T
he argum

entso
ckfdis not a socket.

N
O

T
E

S
To accept connections, the follow

ing steps are perform
ed:

1.
A

socket is created w
ithsocket(2).

2.
T

he
socket is bound to a local address using

bind
(2), so that other sockets m

ay be
connect(2)ed

to it.

3.
A

w
illingness to accept incom

ing connections and a queue lim
it for incom

ing connections are
specified w

ithlisten().

4.
C

onnectionsare accepted w
ithaccept(2).

If the
b

a
cklog

argum
ent is greater than the value in

/p
ro

c/sys/n
e

t/co
re

/so
m

a
xco

n
n

,
then it is silently trun-

cated to that value; the default value in this file is 128.

E
X

A
M

P
LES

eebind
(2).

S
E

E
 A

LS
Oaccept(2),bind

(2),connect(2),socket(2),socket(7)

S
P

-K
lausur M

anual-A
uszug

2015-07-21
1

printf(3)
printf(3)

N
A

M
E

printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf −
 form

atted output con
version

S
Y

N
O

P
S

IS#include <
stdio.h>

int printf(const char *
fo

rm
a

t,...);
int fprintf(F

ILE
 *

stre
a

m,const char *fo
rm

a
t,...);

int sprintf(char *
str,const char *fo

rm
a

t,...);
int snprintf(char *

str,size_tsize,const char *fo
rm

a
t,...);

...

D
E

S
C

R
IP

T
IO

N
T

he functions in theprintf() fam
ily produce output according to aform

a
tas described below.

The func-
tions

printf() and
vprintf() w

rite output tostd
o

u
t,

the standard output stream
;

fprintf
() and

vfprintf
()

w
rite output to the given

outputstre
a

m;
sprintf(),snprintf(),vsprintf() and

vsnprintf() w
rite to the char-

acter stringstr.

T
he functionssnprintf() and

vsnprintf() w
rite at m

ostsize
bytes (including the trailing null byte ('\0')) to

str.

T
hese eight functions w

rite the output under the control of a
fo

rm
a

tstring that specifies how
subsequent

argum
ents (or argum

ents accessed via the variable-length argum
ent facilities of

stdarg(3)) are converted for
output.

R
eturn

value
U

pon successful return, these functions return the num
ber of characters printed (not including the trailing

'\0' used to end output to strings).

T
he functionssnprintf() and

vsnprintf() do not w
rite m

ore thansize
bytes (including the trailing '\0').If

the output w
as truncated due to this lim

it then the return v
alue is the num

ber of characters (not including
the trailing '\0') w

hich would have been w
ritten to the final string if enough space had been a

vailable. T
hus,

a
return value ofsizeor m

ore m
eans that the output w

as truncated.
(S

ee also belo
w

under N
O

T
E

S
.)

If an output error is encountered, a ne
gative value is returned.

F
orm

at of the form
at string

T
he form

at string is a character string, beginning and ending in its initial shift state, if an
y.

The form
at

string is com
posed of zero or m

ore directi
ves: ordinary characters (not

%
), w

hich are copied unchanged to
the output stream

; and con
version specifications, each of w

hich results in fetching zero or m
ore subsequent

argum
ents.

E
achconversion specification is introduced by the character

%
,

and ends w
ith aco

nve
rsio

n
sp

e
cifie

r.
In

betw
een there m

ay be (in this order) zero or m
ore

flag
s,

an
optional m

inim
um

fie
ld

 w
id

th,
an

optionalp
re

cisio
nand an optionalle

n
g

th
 m

o
d

ifie
r.

T
he conversion specifier

A
character that specifies the type of con

version to be applied.
A

n exam
ple for a con

version specifier is:

s
T

he
co

n
st ch

a
r *argum

ent is expected to be a pointer to an array of character type (pointer to a
string).

C
haractersfrom

 the array are w
ritten up to (b

ut not including) a term
inating null byte

('\0'); if a precision is specified, no m
ore than the num

ber specified are w
ritten.
If a precision is

given, no null byte need be present; if the precision is not specified, or is greater than the size of
the array,the array m

ust contain a term
inating null byte.

S
E

E
 A

LS
Oprintf(1),asprintf(3),dprintf(3),scanf(3),setlocale(3),w

crtom
b

(3),w
printf(3),locale(5)

S
P

-K
lausur M

anual-A
uszug

2015-07-21
1

open(2)
open(2)

N
A

M
E

open, creat −
 open and possibly create a file or device

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/stat.h>

#include <
fcntl.h>

int open(const char *p
a

th
n

a
m

e,int
flag

s);
int open(const char *p

a
th

n
a

m
e,int

flag
s,m

ode_tm
o

d
e);

int creat(const char *p
a

th
n

a
m

e,m
ode_tm

o
d

e);

D
E

S
C

R
IP

T
IO

N
G

iven
a

p
a

th
n

a
m

efor a file,open() returns a file descriptor
,

a
sm

all, nonnegative integer for use in subse-
quent system

 calls (
read(2),w

rite
(2),lseek(2),fcntl(2), etc.).T

he file descriptor returned by a successful
call w

ill be the low
est-num

bered file descriptor not currently open for the process.

B
y default, the new

file descriptor is set to rem
ain open across an

execve(2) (i.e., theF
D

_C
LO

E
X

E
C

file
descriptor flag described infcntl(2) is initially disabled; theO

_C
LO

E
X

E
C

flag, described below, can be
used to change this def

ault). T
hefile offset is set to the beginning of the file (see

lseek(2)).

A
call to

open() creates a new
o

p
e

n
 file

 d
e

scrip
tio

n,an
entry in the system

-w
ide table of open files.

T
his

entry records the file offset and the file status flags (m
odifiable via the

fcntl(2)F
_S

E
T

F
L

operation). Afile
descriptor is a reference to one of these entries; this reference is unaf

fected ifp
a

th
n

a
m

eis subsequently
rem

oved
or

m
odified to refer to a different file.

T
he ne

w
open file description is initially not shared w

ith
any

other process, but sharing m
ay arise via

fork
(2).

T
he argum

entflag
s

m
ust include one of the following

a
cce

ss m
o

d
e

s:O
_R

D
O

N
LY

,
O

_W
R

O
N

LY
,

or
O

_R
D

W
R

.
T

hese request opening the file read-only
,w

rite-only,or
read/w

rite, respecti
vely.

In addition, zero or m
ore file creation flags and file status flags can be bitw

ise-
o

r’d in
flag

s.
T

he
file

 cre
-

a
tio

n
 flag

s
are

O
_C

R
E

AT
,

O
_E

X
C

L
,

O
_N

O
C

T
T

Y
,

and
O

_T
R

U
N

C
.

T
he

file
 sta

tu
s flag

s
are all of the

rem
aining flags listed below.

The distinction betw
een these tw

o
groups of flags is that the file status flags

can be retrieved
and (in som

e cases) m
odified using

fcntl(2).
T

he
full list of file creation flags and file sta-

tus flags is as follow
s:

O
_A

P
P

E
N

D
T

he file is opened in append m
ode.

B
efore each

w
rite

(2), the file offset is positioned at the end of
the file, as if w

ithlseek(2).
O

_A
P

P
E

N
D

m
ay lead to corrupted files on N

F
S

 file system
s if m

ore
than one process appends data to a file at once.

T
his is because N

F
S

 does not support appending
to a file, so the client kernel has to sim

ulate it, w
hich can’

tbe
done w

ithout a race condition.

O
_C

R
E

ATIf the file does not exist it w
ill be created.

T
he ow

ner (user ID
) of the file is set to the ef

fective
user ID

 of the process.
T

he group ow
nership (group ID

) is set either to the ef
fective group ID

 of
the process or to the group ID

 of the parent directory (depending on file system
 type and m

ount
options, and the m

ode of the parent directory
,

see the m
ount optionsbsd

g
ro

u
p

sand
sysvg

ro
u

p
s

described inm
ount(8)).

m
o

d
e

specifies the perm
issions to use in case a ne

w
file is created.

T
his argum

ent m
ust be sup-

plied w
henO

_C
R

E
AT

is specified inflag
s;

if
O

_C
R

E
AT

is not specified, thenm
o

d
eis ignored.

T
he effective perm

issions are m
odified by the process’

s
u

m
a

skin the usual w
ay: T

he perm
issions

of the created file are(m
o

d
e

 &
 ˜u

m
a

sk).N
ote that this m

ode only applies to future accesses of the
new

ly created file; theopen() call that creates a read-only file m
ay w

ell return a read/w
rite file

descriptor.

T
he follow

ing sym
bolic constants are provided for

m
o

d
e:

S
P

-K
lausur M

anual-A
uszug

2015-07-21
1

open(2)
open(2)

S
_IR

W
X

U
00700 user (file ow

ner) has read, w
rite and e

xecute perm
ission

S
_IR

W
X

G
00070 group has read, w

rite and e
xecute perm

ission

S
_IX

G
R

P
00010 group has execute perm

ission

S
_IR

W
X

O
00007 others have read, w

rite and execute perm
ission

S
_IX

O
T

H
00001 others have execute perm

ission

O
_T

R
U

N
CIf the file already exists and is a regular file and the open m

ode allow
s w

riting (i.e., is
O

_R
D

W
R

orO
_W

R
O

N
LY

)
it

w
ill be truncated to length 0.If the file is a F

IF
O

 or term
inal device file, the

O
_T

R
U

N
C

flag is ignored.
O

therw
ise the effect of

O
_T

R
U

N
C

is unspecified.

R
E

T
U

R
N

 VA
LU

E
open() and

creat() return the new
file descriptor,or

−
1

if
an

error occurred (in w
hich case,errn

o
is set

appropriately).

E
R

R
O

R
SE

A
C

C
E

ST
he requested access to the file is not allow

ed, or search perm
ission is denied for one of the direc-

tories in the path prefix ofpa
th

n
a

m
e,

or
the file did not exist yet and w

rite access to the parent
directory is not allow

ed. (S
eealso

path_resolution(7).)

E
E

X
IS

T
p

a
th

n
a

m
ealready exists andO

_C
R

E
AT

and
O

_E
X

C
L

w
ere used.

E
FA

U
LT

p
a

th
n

a
m

epoints outside your accessible address space.

E
IN

T
R

W
hile blocked w

aiting to com
plete an open of a slo

w
device (e.g., a F

IF
O

; seefifo
(7)), the call

w
as

interrupted by a signal handler; see
signal(7).

E
M

F
ILE

T
he process already has the m

axim
um

 num
ber of files open.

E
N

A
M

E
T

O
O

LO
N

G
p

a
th

n
a

m
ew

as
too long.

E
N

F
ILE

T
he system

 lim
it on the total num

ber of open files has been reached.

E
N

O
D

E
Vp

a
th

n
a

m
erefers to a device special file and no corresponding device e

xists.
(T

hisis a Linux ker-
nel bug; in this situationE

N
X

IO
m

ust be returned.)

E
N

O
E

N
TO

_C
R

E
AT

is not set and the nam
ed file does not e

xist.
O

r,
a

directory com
ponent inp

a
th

n
a

m
e

does not exist or is a dangling sym
bolic link.

S
E

E
 A

LS
Ochm

od(2),chow
n(2),close(2),dup(2),fcntl(2),link

(2),lseek(2),m
knod(2),m

m
ap(2),m

ount(2),ope-
nat(2),read(2),socket(2),stat(2),um

ask(2),unlink
(2),w

rite
(2),fopen(3),fifo

(7),path_resolution(7),
sym

link(7)

S
P

-K
lausur M

anual-A
uszug

2015-07-21
2

stat(2)
stat(2)

N
A

M
E

stat, fstat, lstat −
 get file status

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/stat.h>

#include <
unistd.h>

int stat(const char *p
a

th,struct stat *
buf);

int fstat(int
fd

,struct stat *
buf);

int lstat(const char *p
a

th,struct stat *
buf);

F
eature Test M

acro R
equirem

ents for glibc (see
feature_test_m

acros(7)):

lstat(): _B
S

D
_S

O
U

R
C

E
 || _X

O
P

E
N

_S
O

U
R

C
E

 >
=

 500

D
E

S
C

R
IP

T
IO

N
T

hese functions return inform
ation about a file.

N
o perm

issions are required on the file itself, b
ut —

 in the
case ofstat() andlstat() —

 execute (search) perm
ission is required on all of the directories in

p
a

th
that lead

to the file.

stat() stats the file pointed to bypa
th

and fills in
buf.

lstat() is identical tostat(), except that ifp
a

th
is a sym

bolic link, then the link itself is stat-ed, not the file
that it refers to.

fstat() is identical tostat(), except that the file to be stat-ed is specified by the file descriptor
fd

.

A
ll of these system

 calls return asta
tstructure, w

hich contains the follow
ing fields:

struct stat {
dev_t

st_dev;
/*ID

 of device containing file */
ino_t

st_ino;
/*inode num

ber */
m

ode_t
st_m

ode;
/*protection */

nlink_t
st_nlink;

/*num
ber of hard links */

uid_t
st_uid;

/*user ID
 of ow

ner */
gid_t

st_gid;
/*group ID

 of ow
ner */

dev_t
st_rdev;

/*
device ID

 (if special file) */
off_t

st_size;
/* total size, in bytes */

blksize_t st_blksize; /* blocksize for file system
 I/O

 */
blkcnt_t st_blocks; /*num

ber of blocks allocated */
tim

e_t
st_atim

e;/* tim
e of last access */

tim
e_t

st_m
tim

e;/* tim
e of last m

odification */
tim

e_t
st_ctim

e;/* tim
e of last status change */

};

T
he

st_
d

evfield describes the device on w
hich this file resides.

T
he

st_
rd

evfield describes the device that this file (inode) represents.

T
he

st_
sizefield gives

the size of the file (if it is a regular file or a sym
bolic link) in bytes.

T
he size of a

sym
link is the length of the pathnam

e it contains, w
ithout a trailing null byte.

T
he

st_
b

lo
cksfield indicates the num

ber of blocks allocated to the file, 512-byte units.
(T

his m
ay be

sm
aller thanst_

size/512 w
hen the file has holes.)

T
he

st_
b

lksizefield gives
the "preferred" blocksize for ef

ficient file system
 I/O

.
(W

riting to a file in sm
aller

chunks m
ay cause an inefficient read-m

odify-rew
rite.)

S
P

-K
lausur M

anual-A
uszug

2015-07-21
1

stat(2)
stat(2)

N
ot all of the Linux file system

s im
plem

ent all of the tim
e fields.

S
om

e file system
 types allo

w
m

ounting in
such a w

ay that file accesses do not cause an update of the
st_

a
tim

efield. (S
ee"noatim

e" inm
ount(8).)

T
he field

st_
a

tim
eis changed by file accesses, for exam

ple, by
execve(2),m

knod(2),pipe(2),utim
e(2) and

read(2) (of m
ore than zero bytes).

O
ther routines, like

m
m

ap(2), m
ay or m

ay not updatest_
a

tim
e.

T
he field

st_
m

tim
eis changed by file m

odifications, for exam
ple, by

m
knod(2),truncate(2),utim

e(2) and
w

rite
(2) (of m

ore than zero bytes).Moreover,
st_

m
tim

eof a directory is changed by the creation or dele-
tion of files in that directory.

T
he

st_
m

tim
efield is

n
o

tchanged for changes in o
w

ner,
group, hard link

count, or m
ode.

T
he field

st_
ctim

eis changed by w
riting or by setting inode inform

ation (i.e., o
w

ner,
group, link count,

m
ode, etc.).

T
he follow

ing P
O

S
IX

 m
acros are defined to check the file type using the

st_
m

o
d

efield:

S
_IS

R
E

G
(m

)
is

it a regular file?

S
_IS

D
IR

(m
)

directory?

S
_IS

C
H

R
(m

)
characterdevice?

S
_IS

B
LK

(m
)

blockdevice?

S
_IS

F
IF

O
(m

)
F

IF
O

(nam
ed pipe)?

S
_IS

LN
K

(m
)

sym
boliclink? (N

ot in P
O

S
IX

.1-1996.)

S
_IS

S
O

C
K(m

)
socket? (N

ot in P
O

S
IX

.1-1996.)

R
E

T
U

R
N

 VA
LU

E
O

n success, zero is returned.
O

n error
,−

1
is

returned, ande
rrn

o
is set appropriately.

E
R

R
O

R
SE

A
C

C
E

SS
earch perm

ission is denied for one of the directories in the path prefix of
p

a
th.

(S
ee also

path_resolution(7).)

E
B

A
D

F
fd

is bad.

E
FA

U
LTB

ad address.

E
LO

O
P

Too
m

any
sym

bolic links encountered w
hile tra

versing the path.

E
N

A
M

E
T

O
O

LO
N

G
F

ile nam
e too long.

E
N

O
E

N
TA

com
ponent of the pathpa

th
does not exist, or the path is an em

pty string.

E
N

O
M

E
MO

ut of m
em

ory (i.e., kernel m
em

ory).

E
N

O
T

D
IRA

com
ponent of the path is not a directory.

S
E

E
 A

LS
Oaccess(2),chm

od(2),chow
n(2),fstatat(2),readlink

(2),utim
e(2),capabilities(7),sym

link(7)

S
P

-K
lausur M

anual-A
uszug

2015-07-21
2

sigaction(2)
sigaction(2)

N
A

M
E

sigaction −
 P

O
S

IX
 signal handling functions.

S
Y

N
O

P
S

IS#include <
signal.h>

int sigaction(int
sig

n
u

m,const struct sigaction *a
ct,struct sigaction *o

ld
a

ct);

D
E

S
C

R
IP

T
IO

N
T

he
sigaction

system
 call is used to change the action taken by a process on receipt of a specific signal.

sig
n

u
m

specifies the signal and can be an
y

valid signal exceptSIG
K

ILL
and

S
IG

S
T

O
P.

If
a

ctis non−
null, the new

action for signalsig
n

u
m

is installed from
a

ct.
If

o
ld

a
ctis non−

null, the previous
action is saved

in
o

ld
a

ct.

T
he

sigaction
structure is defined as som

ething like

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_m

ask;
int sa_flags;
void (*sa_restorer)(void);

}

O
n som

e architectures a union is in
volved - do not assign to bothsa

_
h

a
n

d
le

rand
sa

_
sig

a
ctio

n.

T
he

sa
_

re
sto

re
relem

ent is obsolete and should not be used.
P

O
S

IX
 does not specify asa

_
re

sto
re

rele-
m

ent.

sa
_

h
a

n
d

le
rspecifies the action to be associated w

ith
sig

n
u

m
and m

ay beS
IG

_D
F

L
for the default action,

S
IG

_IG
N

to ignore this signal, or a pointer to a signal handling function.

sa
_

m
a

skgives
a

mask of signals w
hich should be blocked during e

xecution of the signal handler
.

In
addi-

tion, the signal w
hich triggered the handler w

ill be blocked, unless the
S

A
_N

O
D

E
F

E
R

orS
A

_N
O

M
A

S
K

flags are used.

sa
_

flag
sspecifies a set of flags w

hich m
odify the beha

viour of the signal handling process. It is form
ed by

the bitw
ise O

R
 of zero or m

ore of the follow
ing:

S
A

_N
O

C
LD

S
T

O
P

If
sig

n
u

m
is

S
IG

C
H

LD
,do

not receive notification w
hen child processes stop (i.e., w

hen
child processes recei

ve one ofS
IG

S
T

O
P,S

IG
T

S
T

P
,S

IG
T

T
IN

orS
IG

T
T

O
U

).

S
A

_R
E

S
TA

R
T

P
rovide behaviour com

patible w
ith B

S
D

 signal sem
antics by m

aking certain system
 calls

restartable across signals.

R
E

T
U

R
N

 VA
LU

E
S

sigaction
returns 0 on success and -1 on error.

E
R

R
O

R
SE

IN
VA

L
A

n invalid signal w
as specified.

T
his w

ill also be generated if an attem
pt is m

ade to change the
action forS

IG
K

ILL
orS

IG
S

T
O

P,w
hich cannot be caught.

S
E

E
 A

LS
Okill(1),kill(2),killpg

(2),pause(2),sigsetops(3),

S
P

-K
lausur M

anual-A
uszug

2015-07-21
1

sigsuspend/sigprocm
ask(2)

sigsuspend/sigprocm
ask(2)

N
A

M
E

sigprocm
ask −

 change and/or exam
ine caller’

s
signal m

ask
sigsuspend −

 install a signal m
ask and suspend caller until signal

S
Y

N
O

P
S

IS#include <
signal.h>

int sigprocm
ask(inth

o
w

,const sigset_t *se
t,sigset_t *o

se
t);

int sigsuspend(const sigset_t *se
t);

D
E

S
C

R
IP

T
IO

N
 sigprocm

ask
T

he
sigprocm

ask()function is used to exam
ine and/or change the caller’

s
signal m

ask.
If the value is

S
IG

_B
LO

C
K

,
the set pointed to by the ar

gum
entse

tis added to the current signal m
ask.

If the value is
S

IG
_U

N
B

LO
C

K
,

the set pointed by the ar
gum

entse
tis rem

oved
from

 the current signal m
ask.

If the v
alue

is
S

IG
_S

E
T

M
A

S
K

,
the current signal m

ask is replaced by the set pointed to by the ar
gum

entse
t.

If
the

argum
ento

se
tis notN

U
LL

,
the previous m

ask is stored in the space pointed to by
o

se
t.

If
the value of the

argum
entse

tis
N

U
LL

,
the value

h
o

w
is not significant and the caller’

s
signal m

ask is unchanged; thus, the
call can be used to inquire about currently blocked signals.

If there are any
pending unblocked signals after the call to

sigprocm
ask(),atleast one of those signals w

ill
be delivered before the call tosigprocm

ask()returns.

It is not possible to block those signals that cannot be ignored this restriction is silently im
posed by the sys-

tem
. S

eesigaction(2).

If
sigprocm

ask()fails, the caller’s
signal m

ask is not changed.

R
E

T
U

R
N

 VA
LU

E
S

O
n success,sigprocm

ask()returns0.
O

n
failure, it returns−

1
and setserrno

to indicate the error.

E
R

R
O

R
Ssigprocm

ask()fails if any
ofthe follow

ing is true:

E
FA

U
LT

se
toro

se
tpoints to an illegaladdress.

E
IN

VA
L

T
he value of theh

o
w

argum
ent is not equal to one of the defined values.

D
E

S
C

R
IP

T
IO

N
 sigsuspend

sigsuspend()replaces the caller’
s

signal m
ask w

ith the set of signals pointed to by the ar
gum

entse
tand

then suspends the caller until deli
very of a signal w

hose action is either to e
xecute a signal catching func-

tion or to term
inate the process.

If the action is to term
inate the process,

sigsuspend()does not return.If the action is to execute a signal
catching function,sigsuspend()returns after the signal catching function returns.

O
n return, the signal

m
ask is restored to the set that existed before the call to

sigsuspend().

It is not possible to block those signals that cannot be ignored (see
signal(5)); this restriction is silently

im
posed by the system

.

R
E

T
U

R
N

 VA
LU

E
S

S
incesigsuspend()suspends process e

xecution indefinitely,there is no successful com
pletion return v

alue.
O

n failure, it returns −
1 and sets

errno
to indicate the error.

E
R

R
O

R
Ssigsuspend()fails if either of the follow

ing is true:

E
FA

U
LT

se
tpoints to an illegaladdress.

E
IN

T
R

A
signal is caught by the calling process and control is returned from

 the signal catching
function.

S
E

E
 A

LS
Osigaction(2),sigsetops(3C

),

S
P

-K
lausur M

anual-A
uszug

2015-07-21
1

sigsetops(3C
)

sigsetops(3C
)

N
A

M
E

sigsetops, sigem
ptyset, sigfillset, sigaddset, sigdelset, sigism

em
ber −

 m
anipulate sets of signals

S
Y

N
O

P
S

IS#include <
signal.h>

int sigem
ptyset(sigset_t *se

t);

int sigfillset(sigset_t *se
t);

int sigaddset(sigset_t *se
t,int

sig
n

o);

int sigdelset(sigset_t *se
t,int

sig
n

o);

int sigism
em

ber(sigset_t *se
t,int

sig
n

o);

D
E

S
C

R
IP

T
IO

N
T

hese functions m
anipulatesig

se
t_

tdata types, representing the set of signals supported by the im
plem

en-
tation.

sigem
ptyset()initializes the set pointed to byse

tto exclude all signals defined by the system
.

sigfillset()initializes the set pointed to byse
tto include all signals defined by the system

.

sigaddset()adds the individual signal specified by the value of
sig

n
o

to the set pointed to byse
t.

sigdelset()deletes the individual signal specified by the value of
sig

n
o

from
 the set pointed to byse

t.

sigism
em

ber()checks w
hether the signal specified by the value of

sig
n

o
is a m

em
ber of the set pointed to

by
se

t.

A
ny

object of type
sig

se
t_

tm
ust be initialized by applying eithersigem

ptyset()or
sigfillset()

before
applying any

other operation.

R
E

T
U

R
N

 VA
LU

E
S

U
pon successful com

pletion, thesigism
em

ber()function returns a value of one if the specified signal is a
m

em
ber of the specified set, or a value of 0 if it is not. U

pon successful com
pletion, the other functions

return a value of 0. O
therw

ise a value of −
1 is returned and

errno
is set to indicate the error.

E
R

R
O

R
Ssigaddset(),sigdelset(),and

sigism
em

ber()w
ill fail if the follow

ing is true:

E
IN

VA
L

T
he value of thesig

n
o

argum
ent is not a valid signal num

ber.

sigfillset()w
ill fail if the follow

ing is true:

E
FA

U
LT

T
he

se
targum

ent specifies an in
valid address.

S
E

E
 A

LS
Osigaction(2),sigpending(2),sigprocm

ask(2),sigsuspend(2),attributes(5),signal(5)

S
P

-K
lausur M

anual-A
uszug

2013-07-23
1

w
aitpid(2)

w
aitpid(2)

N
A

M
E

w
aitpid −

 w
ait for child process to change state

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/w

ait.h>

pid_t w
aitpid(pid_t

p
id

,int *
sta

t_
lo

c,int
o

p
tio

n
s);

D
E

S
C

R
IP

T
IO

N
w

aitpid()
suspends the calling process until one of its children changes state; if a child process changed

state prior to the call tow
aitpid(),return is im

m
ediate.p

id
specifies a set of child processes for w

hich sta-
tus is requested.

If
p

id
is equal to(pid_t)−

1,status is requested for an
y

child process.

If
p

id
is greater than(pid_t)0,

it
specifies the processID

of the child process for w
hich status is

requested.

If
p

id
is equal to(pid_t)0

status is requested for an
y

child process w
hose process group

ID
is equal

to that of the calling process.

If
p

id
is less than(pid_t)−

1,
status is requested for an

y
child process w

hose process group
ID

is
equal to the absolute value of

p
id

.

If
w

aitpid()
returns because the status of a child process is a

vailable, then that status m
ay be e

valuated w
ith

the m
acros defined bywstat(5).

If the calling process had specified a non-zero value of
sta

t_
lo

c,the status
of the child process w

ill be stored in the location pointed to by
sta

t_
lo

c.

T
he

o
p

tio
n

sargum
ent is constructed from

 the bitw
ise inclusi

ve
O

R
of zero or m

ore of the following flags,
defined in the header<sys/w

ait.h>:

W
C

O
N

T
IN

U
E

D
T

he status of any
continued child process specified by

p
id,

w
hose status has not

been reported since it continued, is also reported to the calling process.

W
N

O
H

A
N

G
w

aitpid()
w

ill not suspend execution of the calling process if status is not im
m

e-
diately available for one of the child processes specified by

p
id

.

W
N

O
W

A
IT

K
eep the process w

hose status is returned in
sta

t_
lo

c
in a w

aitable state. T
he

process m
ay be w

aited for again w
ith identical results.

R
E

T
U

R
N

 VA
LU

E
S

If
w

aitpid()
returns because the status of a child process is a

vailable, this function returns a value equal to
the processID

of the child process for w
hich status is reported.

If
w

aitpid()
returns due to the deli

very of a
signal to the calling process,

−
1

is returned anderrno
is set toE

IN
T

R
.

If
this function w

as invoked
w

ith
W

N
O

H
A

N
G

set in
o

p
tio

n
s,ithas at least one child process specified by

p
id

for w
hich status is not available,

and status is not available for any
process specified bypid,

0
is returned.O

therw
ise,−

1
is returned, and

errno
is set to indicate the error.

E
R

R
O

R
Sw

aitpid()
w

ill fail if one or m
ore of the follow

ing is true:

E
C

H
ILD

T
he process or process group specified by

p
id

does not exist or is not a child of the call-
ing process or can ne

ver
be

in
the states specified byop

tio
n

s.

E
IN

T
R

w
aitpid()

w
as

interrupted due to the receipt of a signal sent by the calling process.

E
IN

VA
L

A
n invalid value w

as specified forop
tio

n
s.

S
E

E
 A

LS
Oexec(2),exit(2),fork

(2),sigaction(2),w
stat(5)

S
P

-K
lausur M

anual-A
uszug

2015-07-21
1

