
accept(2)
accept(2)

N
A

M
E

accept −
 accept a connection on a socket

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/socket.h>

int accept(ints,struct sockaddr *a
d

d
r,int *

a
d

d
rle

n);

D
E

S
C

R
IP

T
IO

N
T

he argum
ents

is a socket that has been created w
ith

socket(3N
) and bound to an address w

ith
bind

(3N
),

and that is listening for connections after a call to
listen(3N

).
T

heaccept()function extracts the first con-
nection on the queue of pending connections, creates a ne

w
socket w

ith the properties ofs,
and allocates a

new
file descriptor,n

s,for the socket. Ifno pending connections are present on the queue and the socket is
not m

arked as non-blocking,accept()blocks the caller until a connection is present.
If the socket is

m
arked as non-blocking and no pending connections are present on the queue,

accept()returns an error as
described below.

The
accept()function uses thenetconfig(4) file to determ

ine theS
T

R
E

A
M

S
device file

nam
e associated w

iths.
T

his is the device on w
hich the connect indication w

ill be accepted.
T

he accepted
socket,n

s,is
used to read and w

rite data to and from
 the socket that connected to

n
s;itis

not used to accept
m

ore connections.
T

he original socket (
s)

rem
ains open for accepting further connections.

T
he argum

enta
d

d
r

is a result param
eter that is filled in w

ith the address of the connecting entity as it is
know

n to the com
m

unications layer
.

T
he exact form

at of thead
d

rparam
eter is determ

ined by the dom
ain

in w
hich the com

m
unication occurs.

T
he argum

enta
d

d
rle

n
is a value-result param

eter
.

Initially,
it

contains the am
ount of space pointed to by

a
d

d
r;on

return it contains the length in bytes of the address returned.

T
he

accept()function is used w
ith connection-based socket types, currently w

ith
S

O
C

K
_S

T
R

E
A

M
.

It is possible toselect(3C
) orpoll(2) a socket for the purpose of anaccept()by selecting or polling it for a

read.
H

ow
ever, this w

ill only indicate w
hen a connect indication is pending; it is still necessary to call

accept().

R
E

T
U

R
N

 VA
LU

E
S

T
he

accept()function returns−
1

on error.
Ifitsucceeds, it returns a non-ne

gative integer that is a descrip-
tor for the accepted socket.

E
R

R
O

R
Saccept()w

ill fail if:

E
B

A
D

F
T

he descriptor is invalid.

E
IN

T
R

T
he accept attem

pt w
as interrupted by the deli

very of a signal.

E
M

F
ILE

T
he per-process descriptor table is full.

E
N

O
D

E
V

T
he protocol fam

ily and type corresponding toscould not be found in thenetcon-
fig

file.

E
N

O
M

E
M

T
here w

as insufficient user m
em

ory a
vailable to com

plete the operation.

E
P

R
O

T O
A

protocol error has occurred; for exam
ple, the

S
T

R
E

A
M

S
protocol stack has not

been initialized or the connection has already been released.

E
W

O
U

LD
B

LO
C

K
T

he socket is m
arked as non-blocking and no connections are present to be

accepted.

S
E

E
 A

LS
Opoll(2),bind

(3N
),connect(3N

),listen(3N
),select(3C

),socket(3N
),netconfig(4),attributes(5),socket(5)

S
P

-K
lausur M

anual-A
uszug

2014-07-15
1

bind(2)
bind(2)

N
A

M
E

bind −
 bind a nam

e to a socket

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/socket.h>

int bind(int
s,const struct sockaddr *n

a
m

e,int
n

a
m

e
le

n);

D
E

S
C

R
IP

T
IO

N
bind()

assigns a nam
e to an unnam

ed sock
et. W

hena
socket is created w

ithsocket(3N
), it exists in a nam

e
space (address fam

ily) but has no nam
e assigned.

bind()
requests that the nam

e pointed to by
n

a
m

e
be

assigned to the socket.

R
E

T
U

R
N

 VA
LU

E
S

If the bind is successful,0is returned.A
return value of−

1
indicates an error,w

hich is further specified in
the globalerrno

.

E
R

R
O

R
ST

he
bind()

call w
ill fail if:

E
A

C
C

E
S

T
he requested address is protected and the current user has inadequate perm

ission
to access it.

E
A

D
D

R
IN

U
S

E
T

he specified address is already in use.

E
A

D
D

R
N

O
TA

VA
IL

T
he specified address is not a

vailable on the local m
achine.

E
B

A
D

F
s

is not a valid descriptor.

E
IN

VA
L

n
a

m
e

le
nis not the size of a valid address for the specified address fam

ily.

E
IN

VA
L

T
he socket is already bound to an address.

E
N

O
S

R
T

here w
ere insufficientST

R
E

A
M

S
resources for the operation to com

plete.

E
N

O
T

S
O

C
K

s
is a descriptor for a file, not a socket.

T
he follow

ing errors are specific to binding nam
es in the

U
N

IX
dom

ain:

E
A

C
C

E
S

S
earch perm

ission is denied for a com
ponent of the path prefix of the pathnam

e in
n

a
m

e.

E
IO

A
n I/O

 error occurred w
hile m

aking the directory entry or allocating the inode.

E
IS

D
IR

A
null pathnam

e w
as specified.

E
LO

O
P

Too
m

any
sym

bolic links w
ere encountered in translating the pathnam

e in
n

a
m

e.

E
N

O
E

N
T

A
com

ponent of the path prefix of the pathnam
e in
n

a
m

edoes not exist.

E
N

O
T

D
IR

A
com

ponent of the path prefix of the pathnam
e in
n

a
m

eis not a directory.

E
R

O
F

S
T

he inode w
ould reside on a read-only file system

.

S
E

E
 A

LS
Ounlink

(2),socket(3N
),attributes(5),socket(5)

N
O

T
E

S
B

inding a nam
e in theU

N
IX

dom
ain creates a socket in the file system

 that m
ust be deleted by the caller

w
hen it is no longer needed (using

unlink
(2)).

T
he rules used in nam

e binding vary betw
een com

m
unication dom

ains.

S
P

-K
lausur M

anual-A
uszug

2014-07-15
1

opendir/readdir(3)
opendir/readdir(3)

N
A

M
E

opendir −
 open a directory / readdir −

 read a directory

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
dirent.h>

D
IR

 *opendir(const char *n
a

m
e);

struct dirent *readdir(D
IR

 *
d

ir);
int readdir_r(D

IR
 *

d
irp,struct dirent *

e
n

try,struct dirent **
resu

lt);

D
E

S
C

R
IP

T
IO

N
 opendir

T
he

opendir()
function opens a directory stream

 corresponding to the directory
n

a
m

e,and returns a pointer
to the directory stream

.
T

he stream
 is positioned at the first entry in the directory.

R
E

T
U

R
N

 VA
LU

E
T

he
opendir()

function returns a pointer to the directory stream
 or N

U
LL if an error occurred.

D
E

S
C

R
IP

T
IO

N
 readdir

T
he

readdir()
function returns a pointer to a dirent structure representing the next directory entry in the

directory stream
 pointed to bydir.

Itreturns N
U

LL on reaching the end-of-file or if an error occurred.

D
E

S
C

R
IP

T
IO

N
 readdir_r

T
he

readdir_r()
function initializes the structure referenced by

e
n

try
and storesa

pointer to this structure
in

resu
lt.

O
n

successful return, the pointer returned at
*re

su
ltw

ill have the sam
evalue as

the
argum

ent
e

n
try.U

pon reaching the end of the directory stream
, this pointer w

ill ha
ve the value N

U
LL.

T
he data returned byreaddir()

is overw
ritten by subsequent calls toreaddir()

for the
sam

e
directory

stream
.

T
he

d
ire

n
tstructure is defined as follow

s:

struct dirent {
long

d_ino;
/* inode num

ber */
off_t

d_off;
/*

offset to the next dirent */
unsigned shortd_reclen;

/*length of this record */
unsigned chard_type;

/*type of file */
char

d_nam
e[256];/* filenam

e */
};

R
E

T
U

R
N

 VA
LU

E
T

he
readdir()

function returns a pointer to a dirent structure, or N
U

LL if an error occurs or end-of-file is
reached.

readdir_r()
returns 0if successful or an error num

ber to indicate failure.

E
R

R
O

R
SE

A
C

C
E

SP
erm

ission denied.

E
N

O
E

N
TD

irectory does not exist, orna
m

eis an em
pty string.

E
N

O
T

D
IRn

a
m

eis not a directory.

S
P

-K
lausur M

anual-A
uszug

2014-07-15
1

feof/ferror/fileno(3)
feof/ferror/fileno(3)

N
A

M
E

clearerr,feof, ferror,fileno −
 check and reset stream

 status

S
Y

N
O

P
S

IS#include <
stdio.h>

void clearerr(F
ILE

 *
stre

a
m);

int feof(F
ILE

 *
stre

a
m);

int ferror(F
ILE

 *
stre

a
m);

int fileno(F
ILE

 *
stre

a
m);

D
E

S
C

R
IP

T
IO

N
T

he functionclearerr() clears the end-of-file and error indicators for the stream
 pointed to by

stre
a

m.

T
he functionfeof() tests the end-of-file indicator for the stream

 pointed to by
stre

a
m,

returning non-zero if
it is set.

T
he end-of-file indicator can only be cleared by the function

clearerr().

T
he functionferror() tests the error indicator for the stream

 pointed to by
stre

a
m,returning non-zero if it is

set. T
heerror indicator can only be reset by the

clearerr() function.

T
he functionfileno() exam

ines the argum
ent
stre

a
m

and returns its integer descriptor.

F
or

non-locking counterparts, seeunlocked_stdio(3).

E
R

R
O

R
ST

hese functions should not f
ail and do not set the external v

ariable
e

rrn
o.

(H
ow

ever, in
case

fileno()
detects that its argum

ent is not a valid stream
, it m

ust return −
1 and set

e
rrn

o
to

E
B

A
D

F
.)

C
O

N
F

O
R

M
IN

G
 T

O
T

he functionsclearerr(),feof(), andferror() conform
 to C

89 and C
99.

S
E

E
 A

LS
Oopen(2),fdopen(3),stdio(3),unlocked_stdio(3)

S
P

-K
lausur M

anual-A
uszug

2014-07-15
1

fopen/fdopen/fileno(3)
fopen/fdopen/fileno(3)

N
A

M
E

fopen, fdopen, fileno −
 stream

 open functions

S
Y

N
O

P
S

IS#include <
stdio.h>

F
ILE

 *fopen(const char *
p

a
th,const char *m

o
d

e);
F

ILE
 *fdopen(int

fild
e

s,const char *m
o

d
e);

int fileno(F
ILE

 *
stre

a
m);

D
E

S
C

R
IP

T
IO

N
T

he
fopen

function opens the file w
hose nam

e is the string pointed to by
p

a
th

and associates a stream
 w

ith
it.T

he argum
entm

o
d

epoints to a string beginning w
ith one of the follo

w
ing sequences (A

dditional characters
m

ay follow
these sequences.):

r
O

pen text file for reading.
T

he stream
 is positioned at the beginning of the file.

r+
O

pen for reading and w
riting.

T
he stream

 is positioned at the beginning of the file.

w
T

runcate file to zero length or create text file for w
riting.

T
he stream

 is positioned at the be
ginning

of the file.

w
+

O
pen for reading and w

riting.The file is created if it does not exist, otherw
ise it is truncated.

T
he

stream
 is positioned at the beginning of the file.

a
O

pen for appending (w
riting at end of file).

T
he file is created if it does not e

xist.
T

he
stream

 is
positioned at the end of the file.

a+
O

pen for reading and appending (w
riting at end of file).

T
he file is created if it does not e

xist.
T

he stream
 is positioned at the end of the file.

T
he

fdopen
function associates a stream

 w
ith the existing file descriptor

,
fild

e
s.

T
he

m
o

d
e

of the stream
(one of the values "r", "r+

", "w
", "w

+
", "a", "a+

") m
ust be com

patible w
ith the m

ode of the file descriptor
.

T
he file position indicator of the ne

w
stream

 is set to that belonging tofild
e

s,
and the error and end-of-file

indicators are cleared.
M

odes "w
" or "w

+
" do not cause truncation of the file.

T
he file descriptor is not

dup’ed, and w
ill be closed w

hen the stream
 created by

fdopen
is closed.

T
he result of applyingfdopen

to a
shared m

em
ory object is undefined.

T
he functionfileno() exam

ines the argum
ent
stre

a
m

and returns its integer descriptor.

R
E

T
U

R
N

 VA
LU

E
U

pon successful com
pletionfopen,

fdopen
and

freopen
return a

F
ILE

pointer.
O

therw
ise,N

U
LL

is
returned and the global variableerrn

o
is set to indicate the error.

E
R

R
O

R
SE

IN
VA

L
T

he
m

o
d

eprovided tofopen,fdopen,or
freopen

w
as

inv alid.

T
he

fopen,fdopen
and

freopen
functions m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the

routine
m

alloc(3).

T
he

fopen
function m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the routine

open(2).

T
he

fdopen
function m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the routine

fcntl(2).

S
E

E
 A

LS
Oopen(2),fclose(3),fileno(3)

S
P

-K
lausur M

anual-A
uszug

2014-07-15
1

fread/fw
rite(3)

fread/fw
rite(3)

N
A

M
E

fread, fw
rite −

 binary stream
 input/output

S
Y

N
O

P
S

IS#include <
stdio.h>

size_t fread(void *p
tr,size_tsize,size_tn

m
e

m
b,F

ILE
 *

stre
a

m);

size_t fw
rite(const void *p

tr,size_tsize,size_tn
m

e
m

b,
F

ILE
 *

stre
a

m);

D
E

S
C

R
IP

T
IO

N
T

he functionfread() readsn
m

e
m

belem
ents of data, eachsize

bytes long, from
 the stream

 pointed to by
stre

a
m,storing them

 at the location gi
ven

by
p

tr.

T
he functionfw

rite
() w

rites
n

m
e

m
belem

ents of data, eachsize
bytes long, to the stream

 pointed to by
stre

a
m,obtaining them

 from
 the location gi

ven
by

p
tr.

F
or

nonlocking counterparts, seeunlocked_stdio(3).

R
E

T
U

R
N

 VA
LU

E
fread() andfw

rite
() return the num

ber of item
s successfully read or w

ritten (i.e., not the num
ber of charac-

ters). Ifan error occurs, or the end-of-file is reached, the return value is a short item
 count (or zero).

fread() does not distinguish betw
een end-of-file and error

,
and callers m

ust usefeof(3) and
ferror(3) to

determ
ine w

hich occurred.

C
O

N
F

O
R

M
IN

G
 T

O
C

89, P
O

S
IX

.1-2001.

S
E

E
 A

LS
Oread(2),w

rite
(2),feof(3),ferror(3),unlocked_stdio(3)

S
P

-K
lausur M

anual-A
uszug

2014-07-15
1

socket(2) / ipv6(7)
socket(2) / ipv6(7)

N
A

M
E

ipv6, P
F

_IN
E

T
6 −

 Linux IP
v6 protocol im

plem
entation

S
Y

N
O

P
S

IS#include <
sys/socket.h>

#include <
netinet/in.h>

tcp
6

_
so

cket
=

socket(P
F

_IN
E

T
6, S

O
C

K
_S

T
R

E
A

M
, 0);

ra
w

6
_

so
cket

=
socket(P

F
_IN

E
T

6, S
O

C
K

_R
AW

,
p

ro
to

co
l);

u
d

p
6

_
so

cket
=

socket(P
F

_IN
E

T
6, S

O
C

K
_D

G
R

A
M

,
p

ro
to

co
l);

D
E

S
C

R
IP

T
IO

N
Linux 2.2 optionally im

plem
ents the Internet P

rotocol, v
ersion 6.

T
his m

an page contains a description of
the IP

v6 basic A
P

I as im
plem

ented by the Linux kernel and glibc 2.1.
T

he interface is based on the B
S

D
sockets interface; seesocket(7).

T
he IP

v6 A
P

I aim
s to be m

ostly com
patible w

ith the
ip

(7) v4 A
P

I.
O

nly differences are described in this
m

an page.

To bind anA
F

_IN
E

T
6

socket to any
process the local address should be copied from

 the
in

6
a

d
d

r_
a

n
yvari-

able w
hich hasin

6
_

a
d

d
rtype.

In
static initializationsIN

6A
D

D
R

_A
N

Y
_IN

IT
m

ay also be used, w
hich

expands to a constant e
xpression. B

othof them
 are in netw

ork order.

T
he IP

v6 loopback address (::1) is a
vailable in the globalin

6
a

d
d

r_
lo

o
p

b
a

ckvariable.
For initializations

IN
6A

D
D

R
_LO

O
P

B
A

C
K

_IN
IT

should be used.

IP
v4 connections can be handled w

ith the v6 A
P

I by using the v4-m
apped-on-v6 address type; thus a pro-

gram
 only needs only to support this A

P
I type to support both protocols.

T
his is handled transparently by

the address handling functions in libc.

IP
v4 and IP

v6 share the local port space.
W

hen you get an IP
v4 connection or packet to a IP

v6 socket its
source address w

ill be m
apped to v6 and it w

ill be m
apped to v6.

A
ddress F

orm
at

struct sockaddr_in6 {
uint16_t

sin6_fam
ily;

/*
A

F
_IN

E
T

6 */
uint16_t

sin6_port;
/* port num

ber */
uint32_t

sin6_flow
info; /* IP

v6 flow
inform

ation */
struct in6_addr sin6_addr;

/* IP
v6 address */

uint32_t
sin6_scope_id;/* S

cope ID
 (new

in
2.4) */

};struct in6_addr {
unsigned chars6_addr[16];

/*IP
v6 address */

};

sin
6

_
fa

m
ilyis alw

ays set toA
F

_IN
E

T
6

;sin
6

_
p

o
rtis the protocol port (seesin

_
p

o
rtin

ip
(7));sin

6
_

flo
w

in
fo

is the IP
v6 flow

identifier;sin
6

_
a

d
d

ris the 128-bit IP
v6 address.sin

6
_

sco
p

e
_

idis an ID
 of depending of

on the scope of the address.
It is ne

w
in

L
inux 2.4.

Linux only supports it for link scope addresses, in that
casesin

6
_

sco
p

e
_

idcontains the interface inde
x

(seenetdevice(7))

N
O

T
E

S
T

he
so

cka
d

d
r_

in
6structure is bigger than the generic

so
cka

d
d

r.
Program

s that assum
e that all address

types can be stored safely in a
stru

ct so
cka

d
d

rneed to be changed to use
stru

ct so
cka

d
d

r_
sto

rage
for that

instead.

S
E

E
 A

LS
Ocm

sg(3),ip
(7)

S
P

-K
lausur M

anual-A
uszug

2014-07-15
1

listen(2)
listen(2)

N
A

M
E

listen −
 listen for connections on a socket

S
Y

N
O

P
S

IS#include <
sys/types.h>

/* S
ee N

O
T

E
S

 */
#include <

sys/socket.h>

int listen(int
so

ckfd,int
b

a
cklog);

D
E

S
C

R
IP

T
IO

N
listen() m

arks the socket referred to by
so

ckfdas a passive socket, that is, as a socket that w
ill be used to

accept incom
ing connection requests using

accept(2).

T
he

so
ckfdargum

ent is a file descriptor that refers to a socket of type
S

O
C

K
_S

T
R

E
A

M
orS

O
C

K
_S

E
Q

-
P

A
 C

K
E

T
.

T
he

b
a

cklog
argum

ent defines the m
axim

um
 length to w

hich the queue of pending connections for
so

ckfd
m

ay grow
.

If
a

connection request arri
ves

w
hen the queue is full, the client m

ay recei
ve an

error w
ith an

indication ofE
C

O
N

N
R

E
F

U
S

E
D

or,ifthe underlying protocol supports retransm
ission, the request m

ay be
ignored so that a later reattem

pt at connection succeeds.

R
E

T
U

R
N

 VA
LU

E
O

n success, zero is returned.
O

n error
,−

1
is

returned, ande
rrn

o
is set appropriately.

E
R

R
O

R
SE

A
D

D
R

IN
U

S
E

A
nother socket is already listening on the sam

e port.

E
B

A
D

F
T

he argum
entso

ckfdis not a valid descriptor.

E
N

O
T

S
O

C
K

T
he argum

entso
ckfdis not a socket.

N
O

T
E

S
To accept connections, the follow

ing steps are perform
ed:

1.
A

socket is created w
ithsocket(2).

2.
T

he
socket is bound to a local address using

bind
(2), so that other sockets m

ay be
connect(2)ed

to it.

3.
A

w
illingness to accept incom

ing connections and a queue lim
it for incom

ing connections are
specified w

ithlisten().

4.
C

onnectionsare accepted w
ithaccept(2).

If the
b

a
cklog

argum
ent is greater than the value in

/p
ro

c/sys/n
e

t/co
re

/so
m

a
xco

n
n

,
then it is silently trun-

cated to that value; the default value in this file is 128.

E
X

A
M

P
LES

eebind
(2).

S
E

E
 A

LS
Oaccept(2),bind

(2),connect(2),socket(2),socket(7)

S
P

-K
lausur M

anual-A
uszug

2014-07-15
1

pthread_create/pthread_e
xit(3)

pthread_create/pthread_e
xit(3)

N
A

M
E

pthread_create −
 create a ne

w
thread / pthread_exit −

 term
inate the calling thread

S
Y

N
O

P
S

IS#include <
pthread.h>

int pthread_create(pthread_t *
th

re
a

d,
pthread_attr_t *

a
ttr,

void * (*
sta

rt_
ro

u
tin

e)(void *), void *
a

rg);

void pthread_exit(void *retva
l);

D
E

S
C

R
IP

T
IO

N
pthread_create

creates a new
thread of control that executes concurrently w

ith the calling thread. T
he ne

w
thread applies the functionsta

rt_
ro

u
tin

epassing ita
rg

as first argum
ent. T

he ne
w

thread term
inates either

explicitly,by
calling

pthread_exit(3), or im
plicitly,by

returning from
 thesta

rt_
ro

u
tin

efunction. T
he latter

case is equivalent to callingpthread_exit(3) w
ith the result returned bysta

rt_
ro

u
tin

eas exit code.

T
he

a
ttr

argum
ent specifies thread attributes to be applied to the ne

w
thread. S

eepthread_attr_init(3) for a
com

plete list of thread attributes. T
he
a

ttr
argum

ent can also beNU
LL

,in
w

hich case default attributes are
used: the created thread is joinable (not detached) and has default (non real-tim

e) scheduling polic
y.

pthread_exitterm
inates the execution of the calling thread.All cleanup handlers that ha

ve been set for the
calling thread w

ithpthread_cleanup_push(3) are executed in reverse order (the m
ost recently pushed han-

dler is executed first). F
inalization functions for thread-specific data are then called for all k

eys
that have

non-N
U

LL
values associated w

ith them
 in the calling thread (see

pthread_key_create(3)).
F

inally,
exe-

cution of the calling thread is stopped.

T
he

retva
l

argum
ent is the return value of the thread. It can be consulted from

 another thread using
pthread_join

(3).

R
E

T
U

R
N

 VA
LU

E
O

n success, the identifier of the ne
w

ly created thread is stored in the location pointed by the
th

re
a

d
argu-

m
ent, and a 0 is returned. O

n error
,a

non-zero error code is returned.

T
he

pthread_exitfunction never
returns.

E
R

R
O

R
SE

A
G

A
IN

not enough system
 resources to create a process for the ne

w
thread.

E
A

G
A

IN
m

ore thanP
T

H
R

E
A

D
_T

H
R

E
A

D
S

_M
A

X
threads are already acti

ve.

A
U

T
H

O
RX

avier Leroy
<

X
avier.Leroy@

inria.fr>

S
E

E
 A

LS
Opthread_join

(3),pthread_detach(3),pthread_attr_init(3).

S
P

-K
lausur M

anual-A
uszug

2014-07-15
1

pthread_join(3)
pthread_join(3)

N
A

M
E

pthread_join −
 join w

ith a term
inated thread

S
Y

N
O

P
S

IS#include <
pthread.h>

int pthread_join(pthread_t
th

re
a

d,void **
retva

l);

C
om

pile and link w
ith−

p
th

re
a

d.

D
E

S
C

R
IP

T
IO

N
T

he
pthread_join

() function waits for the thread specified bythre
a

d
to term

inate.
If that thread has

already term
inated, thenpthread_join

() returns im
m

ediately.T
he thread specified byth

re
a

d
m

ust be join-
able.

If
retva

lis not N
U

LL, thenpthread_join
() copies the exit status of the target thread (i.e., the value that the

target thread supplied topthread_exit(3)) into the location pointed to by*re
tva

l.
If

the target thread was
canceled, thenP

T
H

R
E

A
D

_C
A

N
C

E
LE

D
is placed in*re

tva
l.

If m
ultiple threads sim

ultaneously try to join w
ith the sam

e thread, the results are undefined.
If the thread

calling
pthread_join

() is canceled, then the target thread w
ill rem

ain joinable (i.e., it w
ill not be detached).

R
E

T
U

R
N

 VA
LU

E
O

n success,pthread_join
() returns 0; on error,itreturns an error num

ber.

E
R

R
O

R
SE

D
E

A
D

LKA
deadlock w

as detected (e.g., tw
o

threads tried to join w
ith each other); or

th
re

a
d

specifies the
calling thread.

E
IN

VA
L

th
re

a
d

is not a joinable thread.

E
IN

VA
L

A
nother thread is already w

aiting to join w
ith this thread.

E
S

R
C

H
N

o thread w
ith the IDth

re
a

d
could be found.

N
O

T
E

S
A

fter a successful call topthread_join
(), the caller is guaranteed that the target thread has term

inated.

Joining w
ith a thread that has previously been joined results in undefined behavior.

F
ailure to join w

ith a thread that is joinable (i.e., one that is not detached), produces a "zom
bie thread".

A
v oid doing this, since each zom

bie thread consum
es som

e system
 resources, and w

hen enough zom
bie

threads have accum
ulated, it w

ill no longer be possible to create ne
w

threads (or processes).

T
here is no pthreads analog of

w
a

itp
id

(-1
, &

sta
tu

s, 0
),that is, "join w

ith any
term

inated thread".
If you

believe you need this functionality,you probably need to rethink your application design.

A
ll of the threads in a process are peers: an

y
thread can join w

ith anyother thread in the process.

E
X

A
M

P
LES

eepthread_create(3).

S
E

E
 A

LS
Opthread_cancel(3),

pthread_create(3),
pthread_detach(3),

pthread_exit(3),
pthread_tryjoin_np

(3),
pthreads(7)

S
P

-K
lausur M

anual-A
uszug

2014-07-15
1

