
accept(2)
accept(2)

N
A

M
E

accept −
 accept a connection on a socket

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/socket.h>

int accept(ints,struct sockaddr *a
d

d
r,int *

a
d

d
rle

n);

D
E

S
C

R
IP

T
IO

N
T

he argum
ents

is a socket that has been created w
ith

socket(3N
) and bound to an address w

ith
bind

(3N
),

and that is listening for connections after a call to
listen(3N

).
T

heaccept()function extracts the first con-
nection on the queue of pending connections, creates a ne

w
socket w

ith the properties ofs,
and allocates a

new
file descriptor,n

s,for the socket. Ifno pending connections are present on the queue and the socket is
not m

arked as non-blocking,accept()blocks the caller until a connection is present.
If the socket is

m
arked as non-blocking and no pending connections are present on the queue,

accept()returns an error as
described below.

The
accept()function uses thenetconfig(4) file to determ

ine theS
T

R
E

A
M

S
device file

nam
e associated w

iths.
T

his is the device on w
hich the connect indication w

ill be accepted.
T

he accepted
socket,n

s,is
used to read and w

rite data to and from
 the socket that connected to

n
s;itis

not used to accept
m

ore connections.
T

he original socket (
s)

rem
ains open for accepting further connections.

T
he argum

enta
d

d
r

is a result param
eter that is filled in w

ith the address of the connecting entity as it is
know

n to the com
m

unications layer
.

T
he exact form

at of thead
d

rparam
eter is determ

ined by the dom
ain

in w
hich the com

m
unication occurs.

T
he argum

enta
d

d
rle

n
is a value-result param

eter
.

Initially,
it

contains the am
ount of space pointed to by

a
d

d
r;on

return it contains the length in bytes of the address returned.

T
he

accept()function is used w
ith connection-based socket types, currently w

ith
S

O
C

K
_S

T
R

E
A

M
.

It is possible toselect(3C
) orpoll(2) a socket for the purpose of anaccept()by selecting or polling it for a

read.
H

ow
ever, this w

ill only indicate w
hen a connect indication is pending; it is still necessary to call

accept().

R
E

T
U

R
N

 VA
LU

E
S

T
he

accept()function returns−
1

on error.
Ifitsucceeds, it returns a non-ne

gative integer that is a descrip-
tor for the accepted socket.

E
R

R
O

R
Saccept()w

ill fail if:

E
B

A
D

F
T

he descriptor is invalid.

E
IN

T
R

T
he accept attem

pt w
as interrupted by the deli

very of a signal.

E
M

F
ILE

T
he per-process descriptor table is full.

E
N

O
D

E
V

T
he protocol fam

ily and type corresponding toscould not be found in thenetcon-
fig

file.

E
N

O
M

E
M

T
here w

as insufficient user m
em

ory a
vailable to com

plete the operation.

E
P

R
O

T O
A

protocol error has occurred; for exam
ple, the

S
T

R
E

A
M

S
protocol stack has not

been initialized or the connection has already been released.

E
W

O
U

LD
B

LO
C

K
T

he socket is m
arked as non-blocking and no connections are present to be

accepted.

S
E

E
 A

LS
Opoll(2),bind

(3N
),connect(3N

),listen(3N
),select(3C

),socket(3N
),netconfig(4),attributes(5),socket(5)

S
P

-K
lausur M

anual-A
uszug

2014-02-13
1

bind(2)
bind(2)

N
A

M
E

bind −
 bind a nam

e to a socket

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/socket.h>

int bind(int
s,const struct sockaddr *n

a
m

e,int
n

a
m

e
le

n);

D
E

S
C

R
IP

T
IO

N
bind()

assigns a nam
e to an unnam

ed sock
et. W

hena
socket is created w

ithsocket(3N
), it exists in a nam

e
space (address fam

ily) but has no nam
e assigned.

bind()
requests that the nam

e pointed to by
n

a
m

e
be

assigned to the socket.

R
E

T
U

R
N

 VA
LU

E
S

If the bind is successful,0is returned.A
return value of−

1
indicates an error,w

hich is further specified in
the globalerrno

.

E
R

R
O

R
ST

he
bind()

call w
ill fail if:

E
A

C
C

E
S

T
he requested address is protected and the current user has inadequate perm

ission
to access it.

E
A

D
D

R
IN

U
S

E
T

he specified address is already in use.

E
A

D
D

R
N

O
TA

VA
IL

T
he specified address is not a

vailable on the local m
achine.

E
B

A
D

F
s

is not a valid descriptor.

E
IN

VA
L

n
a

m
e

le
nis not the size of a valid address for the specified address fam

ily.

E
IN

VA
L

T
he socket is already bound to an address.

E
N

O
S

R
T

here w
ere insufficientST

R
E

A
M

S
resources for the operation to com

plete.

E
N

O
T

S
O

C
K

s
is a descriptor for a file, not a socket.

T
he follow

ing errors are specific to binding nam
es in the

U
N

IX
dom

ain:

E
A

C
C

E
S

S
earch perm

ission is denied for a com
ponent of the path prefix of the pathnam

e in
n

a
m

e.

E
IO

A
n I/O

 error occurred w
hile m

aking the directory entry or allocating the inode.

E
IS

D
IR

A
null pathnam

e w
as specified.

E
LO

O
P

Too
m

any
sym

bolic links w
ere encountered in translating the pathnam

e in
n

a
m

e.

E
N

O
E

N
T

A
com

ponent of the path prefix of the pathnam
e in
n

a
m

edoes not exist.

E
N

O
T

D
IR

A
com

ponent of the path prefix of the pathnam
e in
n

a
m

eis not a directory.

E
R

O
F

S
T

he inode w
ould reside on a read-only file system

.

S
E

E
 A

LS
Ounlink

(2),socket(3N
),attributes(5),socket(5)

N
O

T
E

S
B

inding a nam
e in theU

N
IX

dom
ain creates a socket in the file system

 that m
ust be deleted by the caller

w
hen it is no longer needed (using

unlink
(2)).

T
he rules used in nam

e binding vary betw
een com

m
unication dom

ains.

S
P

-K
lausur M

anual-A
uszug

2014-02-13
1

opendir/readdir(3)
opendir/readdir(3)

N
A

M
E

opendir −
 open a directory / readdir −

 read a directory

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
dirent.h>

D
IR

 *opendir(const char *n
a

m
e);

struct dirent *readdir(D
IR

 *
d

ir);
int readdir_r(D

IR
 *

d
irp,struct dirent *

e
n

try,struct dirent **
resu

lt);

D
E

S
C

R
IP

T
IO

N
 opendir

T
he

opendir()
function opens a directory stream

 corresponding to the directory
n

a
m

e,and returns a pointer
to the directory stream

.
T

he stream
 is positioned at the first entry in the directory.

R
E

T
U

R
N

 VA
LU

E
T

he
opendir()

function returns a pointer to the directory stream
 or N

U
LL if an error occurred.

D
E

S
C

R
IP

T
IO

N
 readdir

T
he

readdir()
function returns a pointer to a dirent structure representing the next directory entry in the

directory stream
 pointed to bydir.

Itreturns N
U

LL on reaching the end-of-file or if an error occurred.

D
E

S
C

R
IP

T
IO

N
 readdir_r

T
he

readdir_r()
function initializes the structure referenced by

e
n

try
and storesa

pointer to this structure
in

resu
lt.

O
n

successful return, the pointer returned at
*re

su
ltw

ill have the sam
evalue as

the
argum

ent
e

n
try.U

pon reaching the end of the directory stream
, this pointer w

ill ha
ve the value N

U
LL.

T
he data returned byreaddir()

is overw
ritten by subsequent calls toreaddir()

for the
sam

e
directory

stream
.

T
he

d
ire

n
tstructure is defined as follow

s:

struct dirent {
long

d_ino;
/* inode num

ber */
off_t

d_off;
/*

offset to the next dirent */
unsigned shortd_reclen;

/*length of this record */
unsigned chard_type;

/*type of file */
char

d_nam
e[256];/* filenam

e */
};

R
E

T
U

R
N

 VA
LU

E
T

he
readdir()

function returns a pointer to a dirent structure, or N
U

LL if an error occurs or end-of-file is
reached.

readdir_r()
returns 0if successful or an error num

ber to indicate failure.

E
R

R
O

R
SE

A
C

C
E

SP
erm

ission denied.

E
N

O
E

N
TD

irectory does not exist, orna
m

eis an em
pty string.

E
N

O
T

D
IRn

a
m

eis not a directory.

S
P

-K
lausur M

anual-A
uszug

2014-02-13
1

fopen/fdopen/fileno(3)
fopen/fdopen/fileno(3)

N
A

M
E

fopen, fdopen, fileno −
 stream

 open functions

S
Y

N
O

P
S

IS#include <
stdio.h>

F
ILE

 *fopen(const char *
p

a
th,const char *m

o
d

e);
F

ILE
 *fdopen(int

fild
e

s,const char *m
o

d
e);

int fileno(F
ILE

 *
stre

a
m);

D
E

S
C

R
IP

T
IO

N
T

he
fopen

function opens the file w
hose nam

e is the string pointed to by
p

a
th

and associates a stream
 w

ith
it.T

he argum
entm

o
d

epoints to a string beginning w
ith one of the follow

ing sequences (A
dditional characters

m
ay follow

these sequences.):

r
O

pen text file for reading.
T

he stream
 is positioned at the beginning of the file.

r+
O

pen for reading and w
riting.

T
he stream

 is positioned at the beginning of the file.

w
T

runcate file to zero length or create text file for w
riting.

T
he stream

 is positioned at the be
ginning

of the file.

w
+

O
pen for reading and w

riting.
T

he file is created if it does not e
xist, otherw

ise it is truncated.The
stream

 is positioned at the beginning of the file.

a
O

pen for appending (w
riting at end of file).The file is created if it does not e

xist.
T

he
stream

 is
positioned at the end of the file.

a+
O

pen for reading and appending (w
riting at end of file).

T
he file is created if it does not e

xist.
T

he stream
 is positioned at the end of the file.

T
he

fdopen
function associates a stream

 w
ith the existing file descriptor

,
fild

e
s.

T
he

m
o

d
e

of the stream
(one of the values "r", "r+

", "w
", "w

+
", "a", "a+

") m
ust be com

patible w
ith the m

ode of the file descriptor
.

T
he file position indicator of the ne

w
stream

 is set to that belonging tofild
e

s,
and the error and end-of-file

indicators are cleared.M
odes "w

" or "w
+

" do not cause truncation of the file.
T

he file descriptor is not
dup’ed, and w

ill be closed w
hen the stream

 created by
fdopen

is closed.
T

he result of applyingfdopen
to a

shared m
em

ory object is undefined.

T
he functionfileno() exam

ines the argum
ent
stre

a
m

and returns its integer descriptor.

R
E

T
U

R
N

 VA
LU

E
U

pon successful com
pletionfopen,

fdopen
and

freopen
return a

F
ILE

pointer.
O

therw
ise,N

U
LL

is
returned and the global variableerrn

o
is set to indicate the error.

E
R

R
O

R
SE

IN
VA

L
T

he
m

o
d

eprovided tofopen,fdopen,or
freopen

w
as

inv alid.

T
he

fopen,fdopen
and

freopen
functions m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the

routine
m

alloc(3).

T
he

fopen
function m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the routine

open(2).

T
he

fdopen
function m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the routine

fcntl(2).

S
E

E
 A

LS
Oopen(2),fclose(3),fileno(3)

S
P

-K
lausur M

anual-A
uszug

2014-02-13
1

getc/fgets/putc/fputs(3)
getc/fgets/putc/fputs(3)

N
A

M
E

fgetc, fgets, getc, getchar
,fputc, fputs, putc, putchar−

input and output of characters and strings

S
Y

N
O

P
S

IS#include <
stdio.h>

int fgetc(F
ILE

 *
stre

a
m);

char *fgets(char *s,int
size,F

ILE
 *

stre
a

m);
int getc(F

ILE
 *

stre
a

m);
int getchar(void);
int fputc(int

c,F
ILE

 *
stre

a
m);

int fputs(const char *s,F
ILE

 *
stre

a
m);

int putc(int
c,F

ILE
 *

stre
a

m);
int putchar(int

c);

D
E

S
C

R
IP

T
IO

N
fgetc() reads the next character fromstre

a
m

and returns it as anun
sig

n
e

d
 cha

r
cast to anin

t,
or

E
O

F
on

end of file or error.

getc() is equivalent to
fgetc() except that it m

ay be im
plem

ented as a m
acro w

hich e
valuatesstre

a
m

m
ore

than once.

getchar() is equivalent to
getc(std

in).

fgets() reads in at m
ost one less than

size
characters fromstre

a
m

and stores them
 into the b

uffer pointed to
by

s.
R

eading stops after anEO
F

or a new
line.

If
a

new
line is read, it is stored into the b

uffer.
A

’\0’
is

stored after the last character in the buffer.

fputc() w
rites the characterc,cast to anu

n
sig

n
e

d
 ch

a
r,to

stre
a

m.

fputs() w
rites the strings

to
stre

a
m,w

ithout its term
inating null byte ('\0').

putc() is equivalent to
fputc() except that it m

ay be im
plem

ented as a m
acro w

hich e
valuatesstre

a
m

m
ore

than once.

putchar(c);
is equivalent to

putc(c,std
o

u
t).

C
alls to the functions described here can be m

ix
ed w

ith each other and w
ith calls to other output functions

from
 the

std
io

library for the sam
e output stream

.

R
E

T
U

R
N

 VA
LU

E
fgetc(),getc() and

getchar() return the character read as an
u

n
sig

n
e

d
 cha

r
cast to anin

t
orE

O
F

on end of
file or error.

fgets() returnss
on success, and N

U
LL on error or w

hen end of file occurs w
hile no characters ha

ve been
read.fputc(),putc() and

putchar() return the character w
ritten as an

u
n

sig
n

e
d

 cha
r

cast to anin
t

orE
O

F
on error.

fputs() returns a nonnegative num
ber on success, or

E
O

F
on error.

S
E

E
 A

LS
Oread(2),w

rite
(2),ferror(3),fgetw

c(3),fgetw
s(3),fopen(3),fread(3),fseek(3),getline(3),getw

char(3),
scanf(3),

ungetw
c(3),

w
rite

(2),
ferror(3),

fopen(3),
fputw

c(3),
fputw

s(3),
fseek(3),

fw
rite

(3),
gets(3),

putw
char(3),scanf(3),unlocked_stdio(3)

S
P

-K
lausur M

anual-A
uszug

2014-02-13
1

socket(2) / ipv6(7)
socket(2) / ipv6(7)

N
A

M
E

ipv6, P
F

_IN
E

T
6 −

 Linux IP
v6 protocol im

plem
entation

S
Y

N
O

P
S

IS#include <
sys/socket.h>

#include <
netinet/in.h>

tcp
6

_
so

cket
=

socket(P
F

_IN
E

T
6, S

O
C

K
_S

T
R

E
A

M
, 0);

ra
w

6
_

so
cket

=
socket(P

F
_IN

E
T

6, S
O

C
K

_R
AW

,
p

ro
to

co
l);

u
d

p
6

_
so

cket
=

socket(P
F

_IN
E

T
6, S

O
C

K
_D

G
R

A
M

,
p

ro
to

co
l);

D
E

S
C

R
IP

T
IO

N
Linux 2.2 optionally im

plem
ents the Internet P

rotocol, v
ersion 6.

T
his m

an page contains a description of
the IP

v6 basic A
P

I as im
plem

ented by the Linux kernel and glibc 2.1.
T

he interface is based on the B
S

D
sockets interface; seesocket(7).

T
he IP

v6 A
P

I aim
s to be m

ostly com
patible w

ith the
ip

(7) v4 A
P

I.
O

nly differences are described in this
m

an page.

To bind anA
F

_IN
E

T
6

socket to any
process the local address should be copied from

 the
in

6
a

d
d

r_
a

n
yvari-

able w
hich hasin

6
_

a
d

d
rtype.

In
static initializationsIN

6A
D

D
R

_A
N

Y
_IN

IT
m

ay also be used, w
hich

expands to a constant e
xpression. B

othof them
 are in netw

ork order.

T
he IP

v6 loopback address (::1) is a
vailable in the globalin

6
a

d
d

r_
lo

o
p

b
a

ckvariable.
For initializations

IN
6A

D
D

R
_LO

O
P

B
A

C
K

_IN
IT

should be used.

IP
v4 connections can be handled w

ith the v6 A
P

I by using the v4-m
apped-on-v6 address type; thus a pro-

gram
 only needs only to support this A

P
I type to support both protocols.

T
his is handled transparently by

the address handling functions in libc.

IP
v4 and IP

v6 share the local port space.
W

hen you get an IP
v4 connection or packet to a IP

v6 socket its
source address w

ill be m
apped to v6 and it w

ill be m
apped to v6.

A
ddress F

orm
at

struct sockaddr_in6 {
uint16_t

sin6_fam
ily;

/*
A

F
_IN

E
T

6 */
uint16_t

sin6_port;
/* port num

ber */
uint32_t

sin6_flow
info; /* IP

v6 flow
inform

ation */
struct in6_addr sin6_addr;

/* IP
v6 address */

uint32_t
sin6_scope_id;/* S

cope ID
 (new

in
2.4) */

};struct in6_addr {
unsigned chars6_addr[16];

/*IP
v6 address */

};

sin
6

_
fa

m
ilyis alw

ays set toA
F

_IN
E

T
6

;sin
6

_
p

o
rtis the protocol port (seesin

_
p

o
rtin

ip
(7));sin

6
_

flo
w

in
fo

is the IP
v6 flow

identifier;sin
6

_
a

d
d

ris the 128-bit IP
v6 address.sin

6
_

sco
p

e
_

idis an ID
 of depending of

on the scope of the address.
It is ne

w
in

L
inux 2.4.

Linux only supports it for link scope addresses, in that
casesin

6
_

sco
p

e
_

idcontains the interface inde
x

(seenetdevice(7))

N
O

T
E

S
T

he
so

cka
d

d
r_

in
6structure is bigger than the generic

so
cka

d
d

r.
Program

s that assum
e that all address

types can be stored safely in a
stru

ct so
cka

d
d

rneed to be changed to use
stru

ct so
cka

d
d

r_
sto

rage
for that

instead.

S
E

E
 A

LS
Ocm

sg(3),ip
(7)

S
P

-K
lausur M

anual-A
uszug

2014-02-13
1

listen(2)
listen(2)

N
A

M
E

listen −
 listen for connections on a socket

S
Y

N
O

P
S

IS#include <
sys/types.h>

/* S
ee N

O
T

E
S

 */
#include <

sys/socket.h>

int listen(int
so

ckfd,int
b

a
cklog);

D
E

S
C

R
IP

T
IO

N
listen() m

arks the socket referred to by
so

ckfdas a passive socket, that is, as a socket that w
ill be used to

accept incom
ing connection requests using

accept(2).

T
he

so
ckfdargum

ent is a file descriptor that refers to a socket of type
S

O
C

K
_S

T
R

E
A

M
orS

O
C

K
_S

E
Q

-
P

A
 C

K
E

T
.

T
he

b
a

cklog
argum

ent defines the m
axim

um
 length to w

hich the queue of pending connections for
so

ckfd
m

ay grow
.

If
a

connection request arri
ves

w
hen the queue is full, the client m

ay recei
ve an

error w
ith an

indication ofE
C

O
N

N
R

E
F

U
S

E
D

or,ifthe underlying protocol supports retransm
ission, the request m

ay be
ignored so that a later reattem

pt at connection succeeds.

R
E

T
U

R
N

 VA
LU

E
O

n success, zero is returned.
O

n error
,−

1
is

returned, ande
rrn

o
is set appropriately.

E
R

R
O

R
SE

A
D

D
R

IN
U

S
E

A
nother socket is already listening on the sam

e port.

E
B

A
D

F
T

he argum
entso

ckfdis not a valid descriptor.

E
N

O
T

S
O

C
K

T
he argum

entso
ckfdis not a socket.

N
O

T
E

S
To accept connections, the follow

ing steps are perform
ed:

1.
A

socket is created w
ithsocket(2).

2.
T

he
socket is bound to a local address using

bind
(2), so that other sockets m

ay be
connect(2)ed

to it.

3.
A

w
illingness to accept incom

ing connections and a queue lim
it for incom

ing connections are
specified w

ithlisten().

4.
C

onnectionsare accepted w
ithaccept(2).

If the
b

a
cklog

argum
ent is greater than the value in

/p
ro

c/sys/n
e

t/co
re

/so
m

a
xco

n
n

,
then it is silently trun-

cated to that value; the default value in this file is 128.

E
X

A
M

P
LES

eebind
(2).

S
E

E
 A

LS
Oaccept(2),bind

(2),connect(2),socket(2),socket(7)

S
P

-K
lausur M

anual-A
uszug

2014-02-13
1

m
alloc(3)

m
alloc(3)

N
A

M
E

calloc, m
alloc, free, realloc −

 A
llocate and free dynam

ic m
em

ory

S
Y

N
O

P
S

IS#include <
stdlib.h>

void *calloc(size_tn
m

e
m

b,size_tsize);
void *m

alloc(size_tsize);
void free(void

*p
tr);

void *realloc(void
*p

tr,size_tsize);

D
E

S
C

R
IP

T
IO

N
calloc()allocates m

em
ory for an array of

n
m

e
m

belem
ents ofsize

bytes each and returns a pointer to the
allocated m

em
ory.T

he m
em

ory is set to zero.

m
alloc()allocatessizebytes and returns a pointer to the allocated m

em
ory

.
T

he m
em

ory is not cleared.

free()
frees the m

em
ory space pointed to by

p
tr,

w
hich m

ust have been returned by a previous call to
m

al-
loc(),calloc()or

realloc().
O

therw
ise, or iffree(p

tr)
has already been called before, undefined beha

viour
occurs. Ifp

tr
is

N
U

LL
,no

operation is perform
ed.

realloc()
changes the size of the m

em
ory block pointed to by

p
tr

to
size

bytes.
T

hecontents w
ill be

unchanged to the m
inim

um
 of the old and ne

w
sizes; new

ly allocated m
em

ory w
ill be uninitialized.

If
p

tr
is

N
U

LL
,

the call is equivalent to
m

alloc(size);
if

size is equal to zero, the call is equi
valent to

free(p
tr).

U
nlessp

tr
is

N
U

LL
,itm

ust have been returned by an earlier call to
m

alloc(),calloc()orrealloc().

R
E

T
U

R
N

 VA
LU

E
F

or
calloc()and

m
alloc(),the value returned is a pointer to the allocated m

em
ory

,w
hich is suitably aligned

for any
kind of variable, orN

U
LL

if the request fails.

free()returns no value.

realloc()returns a pointer to the new
ly allocated m

em
ory

,w
hich is suitably aligned for anykind of variable

and m
ay be different fromp

tr,
or

N
U

LL
if the request fails. Ifsize

w
as

equal to 0, either N
U

LL or a
pointer suitable to be passed to

fre
e() is returned.If

realloc()fails the original block is left untouched - it is
not freed or m

oved.

C
O

N
F

O
R

M
IN

G
 T

O
A

N
S

I-C

S
E

E
 A

LS
Obrk

(2),posix_m
em

align(3)

S
P

-K
lausur M

anual-A
uszug

2014-02-13
1

pthread_cond(3)
pthread_cond(3)

N
A

M
E

pthread_cond_init,
pthread_cond_destro

y,
pthread_cond_signal,

pthread_cond_broadcast,
pthread_cond_w

ait, pthread_cond_tim
edw

ait −
 operations on conditions

S
Y

N
O

P
S

IS#include <
pthread.h>

pthread_cond_tco
n

d
=

P
T

H
R

E
A

D
_C

O
N

D
_IN

IT
IA

LIZ
E

R
;

int pthread_cond_init(pthread_cond_t *co
n

d,pthread_condattr_t *co
n

d
_

a
ttr);

int pthread_cond_signal(pthread_cond_t *co
n

d);

int pthread_cond_broadcast(pthread_cond_t *co
n

d);

int pthread_cond_w
ait(pthread_cond_t *co

n
d,pthread_m

utex_t *m
u

tex);

int pthread_cond_tim
edw

ait(pthread_cond_t *co
n

d,
pthread_m

utex_t *m
u

tex,
const struct tim

espec
*a

b
stim

e);

int pthread_cond_destroy(pthread_cond_t *co
n

d);

D
E

S
C

R
IP

T
IO

N
A

condition (short for ‘‘condition variable’’) is a synchronization device that allo
w

s threads to suspend e
xe-

cution and relinquish the processors until som
e predicate on shared data is satisfied. T

he basic operations
on conditions are: signal the condition (w

hen the predicate becom
es true), and w

ait for the condition, sus-
pending the thread execution until another thread signals the condition.

A
condition variable m

ust al
w

ays be associated w
ith a m

utex, to a
void the race condition w

here a thread
prepares to w

ait on a condition v
ariable and another thread signals the condition just before the first thread

actually w
aits on it.

pthread_cond_init
initializes the condition variable

co
n

d,
using the condition attributes specified in

co
n

d
_

a
ttr,

or
default attributes ifco

n
d

_
a

ttris
N

U
LL

.
T

he LinuxT
hreads im

plem
entation supports no

attributes for conditions, hence the
co

n
d

_
a

ttrparam
eter is actually ignored.

Variables
of

type
pthread_cond_t

can
also

be
initialized

statically
,

using
the

constant
P

T
H

R
E

A
D

_C
O

N
D

_IN
IT

IA
LIZ

E
R

.

pthread_cond_signalrestarts one of the threads that are w
aiting on the condition variable

co
n

d.
If

no
threads are waiting on

co
n

d,
nothing happens. If several threads are w

aiting onco
n

d,
exactly one is

restarted, but it is not specified w
hich.

pthread_cond_broadcastrestarts all the threads that are w
aiting on the condition v

ariable
co

n
d.

N
othing

happens if no threads are w
aiting on

co
n

d.

pthread_cond_w
aitatom

ically unlocks them
u

tex(as perpthread_unlock_m
utex)

and w
aits for the con-

dition variableco
n

d
to be signaled. T

he thread e
xecution is suspended and does not consum

e an
y

C
P

U
 tim

e
until the condition variable is signaled. T

hem
u

tex
m

ust be locked by the calling thread on entrance to
pthread_cond_w

ait.
B

efore returning to the calling thread,
pthread_cond_w

aitre-acquiresm
u

tex(as per
pthread_lock_m

utex).

U
nlocking the m

utex
and suspending on the condition variable is done atom

ically
.

T
hus, if all threads

alw
ays acquire the m

utex
before signaling the condition, this guarantees that the condition cannot be

S
P

/S
O

S
1-K

lausur M
anual-A

uszug
2014-02-13

1

pthread_cond(3)
pthread_cond(3)

signaled (and thus ignored) betw
een the tim

e a thread locks the m
ute

x
and the tim

e it w
aits on the condition

variable.

pthread_cond_tim
edw

aitatom
ically unlocksm

u
texand w

aits onco
n

d,as
pthread_cond_w

aitdoes, but it
also bounds the duration of the w

ait. If
co

n
d

has not been signaled w
ithin the am

ount of tim
e specified by

a
b

stim
e,

the m
utex

m
u

texis re-acquired andpthread_cond_tim
edw

aitreturns the errorE
T

IM
E

D
O

U
T

.
T

he
a

b
stim

eparam
eter specifies an absolute tim

e, w
ith the sam

e origin as
tim

e(2) andgettim
eofday(2): an

a
b

stim
eof 0 corresponds to 00:00:00 G

M
T

,January 1, 1970.

pthread_cond_destroydestroys a condition variable, freeing the resources it m
ight hold. N

o threads m
ust

be w
aiting on the condition variable on entrance to

pthread_cond_destroy.
In

the LinuxT
hreads im

ple-
m

entation, no resources are associated w
ith condition variables, thus

pthread_cond_destroyactually does
nothing except checking that the condition has no w

aiting threads.

C
A

N
C

E
LLAT

IO
N

pthread_cond_w
aitand

pthread_cond_tim
edw

aitare cancellation points. If a thread is cancelled w
hile

suspended in one of these functions, the thread im
m

ediately resum
es e

xecution, then locks again themu
tex

argum
ent to

pthread_cond_w
ait

and
pthread_cond_tim

edw
ait,

and finally executes the cancellation.
C

onsequently,cleanup handlers are assured that
m

u
texis locked w

hen theyare called.

A
S

Y
N

C
-S

IG
N

A
L S

A
F

E
T

Y
T

he condition functions are not async-signal safe, and should not be called from
 a signal handler

.In
partic-

ular,
calling

pthread_cond_signalor
pthread_cond_broadcastfrom

 a signal handler m
ay deadlock the

calling thread.

R
E

T
U

R
N

 VA
LU

E
A

ll condition variable functions return 0 on success and a non-zero error code on error.

E
R

R
O

R
Spthread_cond_init,

pthread_cond_signal,
pthread_cond_broadcast,

and
pthread_cond_w

ait
never

return an error code.

T
he

pthread_cond_tim
edw

aitfunction returns the follow
ing error codes on error:

E
T

IM
E

D
O

U
T

the condition variable w
as not signaled until the tim

eout specified by
a

b
stim

e

E
IN

T
R

pthread_cond_tim
edw

aitw
as

interrupted by a signal

T
he

pthread_cond_destroyfunction returns the follow
ing error code on error:

E
B

U
S

Y
som

e threads are currently w
aiting on

co
n

d.

A
U

T
H

O
RX

avier Leroy
<

X
avier.Leroy@

inria.fr>

S
E

E
 A

LS
Opthread_condattr_init(3),

pthread_m
utex_lock(3),

pthread_m
utex_unlock(3),

gettim
eofday(2),

nanosleep(2).

S
P

/S
O

S
1-K

lausur M
anual-A

uszug
2014-02-13

2

pthread_create/pthread_e
xit(3)

pthread_create/pthread_e
xit(3)

N
A

M
E

pthread_create −
 create a ne

w
thread / pthread_exit −

 term
inate the calling thread

S
Y

N
O

P
S

IS#include <
pthread.h>

int pthread_create(pthread_t *
th

re
a

d,
pthread_attr_t *

a
ttr,

void * (*
sta

rt_
ro

u
tin

e)(void *), void *
a

rg);

void pthread_exit(void *retva
l);

D
E

S
C

R
IP

T
IO

N
pthread_create

creates a new
thread of control that executes concurrently w

ith the calling thread. T
he ne

w
thread applies the functionsta

rt_
ro

u
tin

epassing ita
rg

as first argum
ent. T

he ne
w

thread term
inates either

explicitly,by
calling

pthread_exit(3), or im
plicitly,by

returning from
 thesta

rt_
ro

u
tin

efunction. T
he latter

case is equivalent to callingpthread_exit(3) w
ith the result returned bysta

rt_
ro

u
tin

eas exit code.

T
he

a
ttr

argum
ent specifies thread attributes to be applied to the ne

w
thread. S

eepthread_attr_init(3) for a
com

plete list of thread attributes. T
he
a

ttr
argum

ent can also beNU
LL

,in
w

hich case default attributes are
used: the created thread is joinable (not detached) and has default (non real-tim

e) scheduling polic
y.

pthread_exitterm
inates the execution of the calling thread.All cleanup handlers that ha

ve been set for the
calling thread w

ithpthread_cleanup_push(3) are executed in reverse order (the m
ost recently pushed han-

dler is executed first). F
inalization functions for thread-specific data are then called for all k

eys
that have

non-N
U

LL
values associated w

ith them
 in the calling thread (see

pthread_key_create(3)).
F

inally,
exe-

cution of the calling thread is stopped.

T
he

retva
l

argum
ent is the return value of the thread. It can be consulted from

 another thread using
pthread_join

(3).

R
E

T
U

R
N

 VA
LU

E
O

n success, the identifier of the ne
w

ly created thread is stored in the location pointed by the
th

re
a

d
argu-

m
ent, and a 0 is returned. O

n error
,a

non-zero error code is returned.

T
he

pthread_exitfunction never
returns.

E
R

R
O

R
SE

A
G

A
IN

not enough system
 resources to create a process for the ne

w
thread.

E
A

G
A

IN
m

ore thanP
T

H
R

E
A

D
_T

H
R

E
A

D
S

_M
A

X
threads are already acti

ve.

A
U

T
H

O
RX

avier Leroy
<

X
avier.Leroy@

inria.fr>

S
E

E
 A

LS
Opthread_join

(3),pthread_detach(3),pthread_attr_init(3).

S
P

-K
lausur M

anual-A
uszug

2014-02-13
1

pthread_detach(3)
pthread_detach(3)

N
A

M
E

pthread_detach −
 put a running thread in the detached state

S
Y

N
O

P
S

IS#include <
pthread.h>

int pthread_detach(pthread_t th);

D
E

S
C

R
IP

T
IO

N
pthread_detach

put the threadth
in the detached state. T

his guarantees that the m
em

ory resources con-
sum

ed byth
w

ill be freed im
m

ediately w
henth

term
inates. H

ow
ever, this prevents other threads from

 syn-
chronizing on the term

ination ofthusing
pthread_join

.

A
thread can be created initially in the detached state, using the

detachstateattribute topthread_create(3).
In contrast,pthread_detach

applies to threads created in the joinable state, and w
hich need to be put in the

detached state later.

A
fter

pthread_detach
com

pletes, subsequent attem
pts to perform

pthread_join
on

th
w

ill fail. If another
thread is already joining the thread

th
at the tim

epthread_detach
is called,pthread_detach

does nothing
and leaves

th
in the joinable state.

R
E

T
U

R
N

 VA
LU

E
O

n success, 0 is returned. O
n error

,a
non-zero error code is returned.

E
R

R
O

R
SE

S
R

C
H

N
o thread could be found corresponding to that specified by

th

E
IN

VA
L

the threadth
is already in the detached state

A
U

T
H

O
RX

avier Leroy
<

X
avier.Leroy@

inria.fr>

S
E

E
 A

LS
Opthread_create(3),pthread_join

(3),pthread_attr_setdetachstate(3).

S
P

/S
O

S
1-K

lausur M
anual-A

uszug
2014-02-13

1

pthread_m
utex(3)

pthread_m
utex(3)

N
A

M
E

pthread_m
utex_init,

pthread_m
utex_lock,

pthread_m
utex_trylock,

pthread_m
ute

x_unlock,
pthread_m

utex_destroy−
operations on m

utexes

S
Y

N
O

P
S

IS#include <
pthread.h>

pthread_m
utex_t

fa
stm

u
tex=

P
T

H
R

E
A

D
_M

U
T

E
X

_IN
IT

IA
LIZ

E
R

;

pthread_m
utex_trecm

u
tex=

P
T

H
R

E
A

D
_R

E
C

U
R

S
IV

E
_M

U
T

E
X

_IN
IT

IA
LIZ

E
R

_N
P

;

pthread_m
utex_te

rrchkm
u

tex=
P

T
H

R
E

A
D

_E
R

R
O

R
C

H
E

C
K

_M
U

T
E

X
_IN

IT
IA

LIZ
E

R
_N

P
;

int pthread_m
utex_init(pthread_m

utex_t *m
u

tex,const pthread_m
utexattr_t *m

u
texa

ttr);

int pthread_m
utex_lock(pthread_m

utex_t *m
u

tex);

int pthread_m
utex_trylock(pthread_m

utex_t *m
u

tex);

int pthread_m
utex_unlock(pthread_m

utex_t *m
u

tex);

int pthread_m
utex_destroy(pthread_m

utex_t *m
u

tex);

D
E

S
C

R
IP

T
IO

N
A

m
utex

is
a

M
U

T
ual E

X
clusion device, and is useful for protecting shared data structures from

 concurrent
m

odifications, and im
plem

enting critical sections and m
onitors.

A
m

utex
has two

possible states: unlocked (not ow
ned by an

y
thread), and locked (ow

ned by one thread). A
m

utex
can never

be
ow

ned by two
different threads sim

ultaneously
.

A
thread attem

pting to lock a m
ute
x

that is already locked by another thread is suspended until the ow
ning thread unlocks the m

ute
x

first.

pthread_m
utex_init

initializes the m
utex

object pointed to bym
u

tex
according to the m

utexattributes
specified inm

u
texa

ttr.
If

m
u

texa
ttris

N
U

LL
,default attributes are used instead.

T
he LinuxT

hreads im
plem

entation supports only one m
ute

x
attributes, them

u
tex

kin
d

,
w

hich is either
‘‘fast’’, ‘‘recursive’’,

or
‘‘error checking’’. T

he kind of a m
utexdeterm

ines w
hether it can be locked ag

ain
by a thread that already ow

ns it.
T

he default kind is ‘
‘fast’’. S

ee
pthread_m

utexattr_init(3) for m
ore

inform
ation on m

utex
attributes.

Variables
of

type
pthread_m

utex_t
can

also
be

initialized
statically

,
using

the
constants

P
T

H
R

E
A

D
_M

U
T

E
X

_IN
IT

IA
LIZ

E
R

(for
fast

m
utexes),

P
T

H
R

E
A

D
_R

E
C

U
R

S
IV

E
_M

U
T

E
X

_IN
I-

T
IA

LIZ
E

R
_N

P
(for

recursive
m

utexes),
and

P
T

H
R

E
A

D
_E

R
R

O
R

C
H

E
C

K
_M

U
T

E
X

_IN
IT

IA
L-

IZ
E

R
_N

P
(for error checking m

utexes).

pthread_m
utex_lock

locks the given
m

utex. If the m
utex

is
currently unlocked, it becom

es locked and
ow

ned by the calling thread, andpthread_m
utex_lock

returns im
m

ediately.If
the m

utex
is

already locked
by another thread,pthread_m

utex_lock
suspends the calling thread until the m

ute
x

is
unlocked.

If the m
utex

is
already locked by the calling thread, the beha

vior ofpthread_m
utex_lock

depends on the
kind of the m

utex. If the m
utexis

of
the ‘‘fast’’

k
ind, the calling thread is suspended until the m

ute
x

is
unlocked, thus effectively causing the calling thread to deadlock. If the m

ute
x

is
of

the ‘‘error checking’’
kind,pthread_m

utex_lock
returns im

m
ediately w

ith the error codeED
E

A
D

LK
.

If
the m

utex
is

of
the

‘‘recursive’’ k
ind,pthread_m

utex_lock
succeeds and returns im

m
ediately

,
recording the num

ber of tim
es

the calling thread has lock
ed the m

utex. A
n equal num

ber of
pthread_m

utex_unlock
operations m

ust be

S
P

/S
O

S
1-K

lausur M
anual-A

uszug
2014-02-13

1

pthread_m
utex(3)

pthread_m
utex(3)

perform
ed before the m

ute
x

returns to the unlocked state.

pthread_m
utex_trylock

behaves
identically to

pthread_m
utex_lock,

except that it does not block the
calling thread if the m

utex
is

already locked by another thread (or by the calling thread in the case of a
‘‘fast’’m

utex). Instead,pthread_m
utex_trylock

returns im
m

ediately w
ith the error code

E
B

U
S

Y
.

pthread_m
utex_unlock

unlocks the given
m

utex. T
he m

utex
is

assum
ed to be locked and ow

ned by the
calling

thread
on

entrance
topthread_m

utex_unlock.
If

the
m

utex
is

of
the

‘‘fast’’
k

ind,
pthread_m

utex_unlock
alw

ays returns it to the unlocked state. If it is of the ‘‘recursive’’ k
ind, it decre-

m
ents the locking count of the m

ute
x

(num
ber ofpthread_m

utex_lock
operations perform

ed on it by the
calling thread), and only w

hen this count reaches zero is the m
ute

x
actually unlocked.

O
n ‘‘error checking’’m

utexes,
pthread_m

utex_unlock
actually checks at run-tim

e that the m
ute

x
is

locked on entrance, and that it w
as locked by the sam

e thread that is no
w

calling
pthread_m

utex_unlock.
If these conditions are not m

et, an error code is returned and the m
ute

x
rem

ains unchanged.‘‘F
ast’’

and
‘‘recursive’’ m

utexes
perform

 no such checks, thus allo
w

ing a locked m
utex

to
be

unlocked by a thread
other than its ow

ner.T
his is non-portable behavior and m

ust not be relied upon.

pthread_m
utex_destroydestroys a m

utex
object, freeing the resources it m

ight hold. T
he m

ute
x

m
ust be

unlocked on entrance. In the LinuxT
hreads im

plem
entation, no resources are associated w

ith m
ute

x
objects,

thuspthread_m
utex_destroyactually does nothing except checking that the m

ute
x

is
unlocked.

R
E

T
U

R
N

 VA
LU

E
pthread_m

utex_init
alw

ays returns 0. T
he other m

ute
x

functions return 0 on success and a non-zero error
code on error.

E
R

R
O

R
ST

he
pthread_m

utex_lock
function returns the follow

ing error code on error:

E
IN

VA
L

the m
utex

has not been properly initialized.

E
D

E
A

D
LKthe m

utex
is

already locked by the calling thread (‘‘error checking’
’m

utexes
only).

T
he

pthread_m
utex_unlock

function returns the follow
ing error code on error:

E
IN

VA
L

the m
utex

has not been properly initialized.

E
P

E
R

M
the calling thread does not ow

n the m
ute

x
(‘‘error checking’’m

utexes
only).

T
he

pthread_m
utex_destroyfunction returns the follow

ing error code on error:

E
B

U
S

Y
the m

utex
is

currently locked.

A
U

T
H

O
RX

avier Leroy
<

X
avier.Leroy@

inria.fr>

S
E

E
 A

LS
Opthread_m

utexattr_init(3),pthread_m
utexattr_setkind_np(3),pthread_cancel(3).

S
P

/S
O

S
1-K

lausur M
anual-A

uszug
2014-02-13

2

stat(2)
stat(2)

N
A

M
E

stat, fstat, lstat −
 get file status

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/stat.h>

#include <
unistd.h>

int stat(const char *p
a

th,struct stat *
buf);

int fstat(int
fd

,struct stat *
buf);

int lstat(const char *p
a

th,struct stat *
buf);

F
eature Test M

acro R
equirem

ents for glibc (see
feature_test_m

acros(7)):

lstat(): _B
S

D
_S

O
U

R
C

E
 || _X

O
P

E
N

_S
O

U
R

C
E

 >
=

 500

D
E

S
C

R
IP

T
IO

N
T

hese functions return inform
ation about a file.

N
o perm

issions are required on the file itself, b
ut —

 in the
case ofstat() andlstat() —

 execute (search) perm
ission is required on all of the directories in

p
a

th
that lead

to the file.

stat() stats the file pointed to bypa
th

and fills in
buf.

lstat() is identical tostat(), except that ifp
a

th
is a sym

bolic link, then the link itself is stat-ed, not the file
that it refers to.

fstat() is identical tostat(), except that the file to be stat-ed is specified by the file descriptor
fd

.

A
ll of these system

 calls return asta
tstructure, w

hich contains the follow
ing fields:

struct stat {
dev_t

st_dev;
/*ID

 of device containing file */
ino_t

st_ino;
/*inode num

ber */
m

ode_t
st_m

ode;
/*protection */

nlink_t
st_nlink;

/*num
ber of hard links */

uid_t
st_uid;

/*user ID
 of ow

ner */
gid_t

st_gid;
/*group ID

 of ow
ner */

dev_t
st_rdev;

/*
device ID

 (if special file) */
off_t

st_size;
/* total size, in bytes */

blksize_t st_blksize; /* blocksize for file system
 I/O

 */
blkcnt_t st_blocks; /*num

ber of blocks allocated */
tim

e_t
st_atim

e;/* tim
e of last access */

tim
e_t

st_m
tim

e;/* tim
e of last m

odification */
tim

e_t
st_ctim

e;/* tim
e of last status change */

};

T
he

st_
d

evfield describes the device on w
hich this file resides.

T
he

st_
rd

evfield describes the device that this file (inode) represents.

T
he

st_
sizefield gives

the size of the file (if it is a regular file or a sym
bolic link) in bytes.

T
he size of a

sym
link is the length of the pathnam

e it contains, w
ithout a trailing null byte.

T
he

st_
b

lo
cksfield indicates the num

ber of blocks allocated to the file, 512-byte units.
(T

his m
ay be

sm
aller thanst_

size/512 w
hen the file has holes.)

T
he

st_
b

lksizefield gives
the "preferred" blocksize for ef

ficient file system
 I/O

.
(W

riting to a file in sm
aller

chunks m
ay cause an inefficient read-m

odify-rew
rite.)

S
P

-K
lausur M

anual-A
uszug

2014-02-13
1

stat(2)
stat(2)

N
ot all of the Linux file system

s im
plem

ent all of the tim
e fields.

S
om

e file system
 types allo

w
m

ounting in
such a w

ay that file accesses do not cause an update of the
st_

a
tim

efield. (S
ee"noatim

e" inm
ount(8).)

T
he field

st_
a

tim
eis changed by file accesses, for exam

ple, by
execve(2),m

knod(2),pipe(2),utim
e(2) and

read(2) (of m
ore than zero bytes).

O
ther routines, like

m
m

ap(2), m
ay or m

ay not updatest_
a

tim
e.

T
he field

st_
m

tim
eis changed by file m

odifications, for exam
ple, by

m
knod(2),truncate(2),utim

e(2) and
w

rite
(2) (of m

ore than zero bytes).Moreover,
st_

m
tim

eof a directory is changed by the creation or dele-
tion of files in that directory.

T
he

st_
m

tim
efield is

n
o

tchanged for changes in o
w

ner,
group, hard link

count, or m
ode.

T
he field

st_
ctim

eis changed by w
riting or by setting inode inform

ation (i.e., o
w

ner,
group, link count,

m
ode, etc.).

T
he follow

ing P
O

S
IX

 m
acros are defined to check the file type using the

st_
m

o
d

efield:

S
_IS

R
E

G
(m

)
is

it a regular file?

S
_IS

D
IR

(m
)

directory?

S
_IS

C
H

R
(m

)
characterdevice?

S
_IS

B
LK

(m
)

blockdevice?

S
_IS

F
IF

O
(m

)
F

IF
O

(nam
ed pipe)?

S
_IS

LN
K

(m
)

sym
boliclink? (N

ot in P
O

S
IX

.1-1996.)

S
_IS

S
O

C
K(m

)
socket? (N

ot in P
O

S
IX

.1-1996.)

R
E

T
U

R
N

 VA
LU

E
O

n success, zero is returned.
O

n error
,−

1
is

returned, ande
rrn

o
is set appropriately.

E
R

R
O

R
SE

A
C

C
E

SS
earch perm

ission is denied for one of the directories in the path prefix of
p

a
th.

(S
ee also

path_resolution(7).)

E
B

A
D

F
fd

is bad.

E
FA

U
LTB

ad address.

E
LO

O
P

Too
m

any
sym

bolic links encountered w
hile tra

versing the path.

E
N

A
M

E
T

O
O

LO
N

G
F

ile nam
e too long.

E
N

O
E

N
TA

com
ponent of the pathpa

th
does not exist, or the path is an em

pty string.

E
N

O
M

E
MO

ut of m
em

ory (i.e., kernel m
em

ory).

E
N

O
T

D
IRA

com
ponent of the path is not a directory.

S
E

E
 A

LS
Oaccess(2),chm

od(2),chow
n(2),fstatat(2),readlink

(2),utim
e(2),capabilities(7),sym

link(7)

S
P

-K
lausur M

anual-A
uszug

2014-02-13
2

