accept(2) accept(2)

NAME
accept — accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, int * addrler);

DESCRIPTION
The agumentsis a socket that has been created witbke(3N) and bound to an address witind (3N),
and that is listening for connections after a call#®n(3N). Theaccept()function extracts the first con-
nection on the queue of pending connections, createw aocket with the properties of and allocates a
new file descriptarns, for the sockt. If no pending connections are present on the queue and the socket is
not marked as non-blockingiccept() blocks the caller until a connection is present. If the socket is
marked as non-blocking and no pending connections are present on theapoepéd()returns an error as
described belw. The accept()function uses th@etconfig4) file to determine th6 TREAMS device file
name associated with This is the device on which the connect indication will be accepted. The accepted
socket,ns, is used to read and write data to and from the socket that connecigdk is not used to accept
more connections. The original sockstremains open for accepting further connections.

The agumentaddr is a result parameter that is filled in with the address of the connecting entity as it is
known to the communications layeThe exact format of thaddr parameter is determined by the domain
in which the communication occurs.

The agumentaddrlenis a \alue-result parametetnitially, it contains the amount of space pointed to by
addr; on return it contains the length in bytes of the address returned.

Theaccept()function is used with connection-based socket types, currentlyS®ithk_STREAM.

It is possible taselec{3C) orpoll(2) a sockt for the purpose of accept()by selecting or polling it for a

read. Hovever, this will only indicate when a connect indication is pending; it is still necessary to call
accept()

RETURN VALUES
Theaccept()function returns-1 on error If it succeeds, it returns a nongaive integer that is a descrip-
tor for the accepted socket.

ERRORS
accept()will fail i
EBADF The descriptor is ielid.
EINTR The accept attempt was interrupted by thevesliof a signal.
EMFILE The per-process descriptor table is fu
ENODEV The protocol &mily and type corresponding saould not be found in theetcon-
fig file.
ENOMEM There was insufficient user memomgitable to complete the operation.
EPROTO A protocol error has occurred; for example, 8®REAMS protocol stack has not
been zed or the connection has already been released.
EWOULDBLOCK The socket is marked as non-blocking and no connections are present to be
accepted.
SEE ALSO

poll(2), bind(3N), connec{3N), listen(3N), selec{3C), socke(3N), netconfig4), attributes(5), socke(5)

SP-Klausur Manual-Auszug 2014-02-13 1

bind(2) bind(2)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int bind(int s, const struct sockaddr *name int nameley;

DESCRIPTION
bind() assigns a name to an unnamed stckVhena socket is created witlsocke(3N), it exists in a name
space (address family) but has no name assighiedl() requests that the name pointed toriamebe
assigned to the socket.

RETURN VALUES
If the bind is successfullis returned.A return \alue of-1 indicates an errowhich is further specified in
the globalerrno.

ERRORS
Thebind() call will f

f:

EACCES The requested address is protected and the current user has inadequate permission
to access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVA IL The specified address is netitable on the local machine.

EBADF sis not a valid descriptor.

EINVAL nameleris not the size of a valid address for the specified address family.

EINVAL The socket is already bound to an address.

ENOSR There were insufficier8TREAMSresources for the operation to complete.

ENOTSOCK sis a descriptor for a file, not a socket.

The following errors are specific to binding names inuURe&X domain:

EACCES Search permission is denied for a component of the path prefix of the pathname in
name

EIO An 1/O error occurred while making the directory entry or allocating the inode.

EISDIR A null pathname was specified.

ELOOP Too mary symbolic links were encountered in translating the pathnamarime

ENOENT A component of the path prefix of the pathnameamedoes not exist.

ENOTDIR A component of the path prefix of the pathnameameis not a directory.

EROFS The inode would reside on a read-only file system.

SEE ALSO

unlink (2), socke(3N), attributes(5), socke(5)
NOTES

Binding a name in th&NIX domain creates a socket in the file system that must be deleted by the caller

when it is no longer needed (usinglink (2)).
The rules used in name binding vary between communication domains.

SP-Klausur Manual-Auszug 2014-02-13 1

opendir/readdir(3) opendir/readdir(3)

NAME
opendir — open a directory / readdir — read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>
DIR *opendir(const char *name);

struct dirent *readdir(DIR * dir);
int readdir_r(DIR * dirp, struct dirent * entry, struct dirent ** result);

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the directong and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to lalr. It returns NULL on reaching the end-of-file or if an error occurred.

DESCRIPTION readdir_r
Thereaddir_r() function initializes the structure referenced egtry and storesa pointer to this structure
in result On successful return, the pointer returned@sult will have the samevalue as the agument
entry. Upon reaching the end of the directory stream, this pointer wid the value NULL.

The data returned bgeaddir() is overwritten by subsequent calls teaddir() for the same directory
stream.

Thedirentstructure is defined as follows:

struct dirent {

long d_ino; [* inode number */
off_t d_of; /* offset to the next dirent */
unsigned shord_reclen; /Mength of this record */
unsigned chard_type; [*type of file */
char d_name[256]; /* filename */
h
RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

readdir_r() returns Qf successful or an error number to indicate failure.

ERRORS
EACCES
Permission denied.
ENOENT
Directory does not exist, mameis an empty string.
ENOTDIR
nameis not a directory.
SP-Klausur Manual-Auszug 2014-02-13 1

fopen/fdopenf/fileno(3) fopen/fdopenffileno(3)

NAME
fopen, fdopen, fileno - stream open functions

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * path, const char *mode);
FILE *fdopen(int fildes const char *modg);
int fileno(FILE * strean);

DESCRIPTION
Thefopen function opens the file whose name is the string pointed athyand associates a stream with
it.

The agumentmodepoints to a string lggnning with one of the following sequences (Additional characters
may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.
r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned agiheitg
of the file.

w+ Open for reading and writing. The file is created if it does rist,eotherwise it is truncatedlhe
stream is positioned at the beginning of the file.

a Open for appending (writing at end of fileJhe file is created if it does natist. Thestream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it doegistot e
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descrifittes The modeof the stream
(one of the alues a+") must be compatible with the mode of the file descriptor
The file position indicator of the mestream is set to that belonging fitsles and the error and end-of-file
indicators are clearedModes "w" or "w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream creatdddyyenis closed. The result of applyifidopento a
shared memory object is undefined.

The functiorfileno() examines the argumestreamand returns its integer descriptor.

RETURN VALUE
Upon successful completioiopen, fdopen and freopen return aFILE pointer Otherwise,NULL is
returned and the global variatg@ernois set to indicate the error.
ERRORS
EINVAL
Themodeprovided tofopen, fdopen, or freopenwas invaid.

Thefopen, fdopen andfreopen functions may also fail and setrno for ary of the errors specified for the
routinemalloc(3).

Thefopen function may also fail and setrnofor ary of the errors specified for the routiopen(2).
Thefdopen function may also fail and setrno for ary of the errors specified for the routifentl (2).

SEE ALSO
open(2), fclosg3), fileno(3)

SP-Klausur Manual-Auszug 2014-02-13 1

getc/fgets/putc/fputs(3)

getc/fgets/putc/fputs(3)

fgetc, fgets, getc, getchdputc, fputs, putc, putchar input and output of characters and strings

SYNOPSIS

#include <stdio.h>

int fgetc(FILE * strean);
char *fgets(char *s, int
int getc(FILE * strean);
int getchar(void);

int fputc(int c, FILE * strean);

int fputs(const char *s, FILE * strean);
int putc(int ¢, FILE * strean);

int putchar(int c);

ze FILE * strean);

DESCRIPTION

fgeto() reads the next character frastreamand returns it as amnsigned har cast to arint, or EOF on
end of file or error.

getd) is equvalent tofgeto() except that it may be implemented as a macro whigluaesstreammore
than once.

getchan() is equvaent togetc(stdin).

fget) reads in at most one less tlerecharacters fronstreamand stores them into thefer pointed to
by s. Reading stops after &8OF or a nevline. If a rewline is read, it is stored into theiffer. A \0’ is
stored after the last character in the buffer.

fputc() writes the charactey, cast to arunsigned charto stream
fputs() writes the string to stream without its terminating null byte (\0").

putc() is equvalent tofputc() except that it may be implemented as a macro whieluatesstreammore
than once.

putchar(c); is equvalent toputc(c, stdou).

Calls to the functions described here can beethiwith each other and with calls to other output functions
from thestdiolibrary for the same output stream.

RETURN VALUE

fget), getd) andgetchan() return the character read aswansigned bar cast to arint or EOF on end of
file or error.

fgety) returnss on success, and NULL on error or when end of file occurs while no charaaterkeka
read. fputc(), putc() andputchar() return the character written as amsigned bar cast to annt or EOF
on error.

fputs() returns a nonmgative rumber on success, BOF on error.

SEE ALSO

read(2), write (2), ferror (3), fgetwc(3), fgetws(3), fopen(3), fread(3), fseek3), getline(3), getwchar(3),
scanf(3), ungetwq3), write (2), ferror (3), fopen(3), fputwc(3), fputws(3), fseek3), fwrite (3), getg3),
putwchar(3), scanf3), unlocked_stdiq3)

SP-Klausur Manual-Auszug 2014-02-13 1

socket(2) / ipv6(7)

socket(2) / ipv6(7)

NAME

ipv6, PF_INET6 — Linux IPv6 protocol implementation
SYNOPSIS

#include <sys/socket.h>

#include <netinet/in.h>

tcp6_soket = socket(PF_INET6, SOCK_STREAM, 0);

raw6_so&et = socket(PF_INET6, SOCK_RAN, protocol);

udp6_soket = socket(PF_INET6, SOCK_DGRAM, protocol);
DESCRIPTION

Linux 2.2 optionally implements the Internet Protoc@sion 6. This man page contains a description of
the IPv6 basic API as implemented by the Linux kernel and glibc 2.1. The interface is based on the BSD
sockets interface; seecke(7).

The IPv6 API aims to be mostly compatible with thé€7) v4 API. Only differences are described in this
man page.

To hind anAF_INET6 soclet to aiy process the local address should be copied frorm@aldr_anyvari-
able which hasn6_addrtype. Instatic initializationssNGADDR_ANY_INIT may also be used, which
expands to a constar@ression. Bottof them are in network order.

The IPv6 loopback address (::1) igidable in the globain6addr_loopbackvariable. For initializations
INGADDR_LOOPBACK_INIT should be used.

IPv4 connections can be handled with the v6 API by using the v4-mapped-on-v6 address type; thus a pro-
gram only needs only to support this API type to support both protocols. This is handled transparently by
the address handling functions in libc.

IPv4 and IPv6 share the local port spaghen you get an IPv4 connection or packet to a IPv6 socket its
source address will be mapped to v6 and it will be mapped to v6.

Address Format

NOTES

struct sockaddr_in6 {
uintl6_t sin6_damily; /* AF_INET6 */
uintl6_t sin6_port; /* port number */
uint32_t sin6_flavinfo; /* IPv6 flow information */
struct in6_addr sin6_addr; /* IPv6 address */
uint32_t sin6_scope_id* Scope ID (n&v in 2.4) */
h

struct in6_addr {
unsigned chars6_addr[16]; /1Pv6 address */
h

sin6_familyis always set toAF_INET6; sin6_portis the protocol port (sesin_portin ip(7)); sin6_flowinfo

is the IPv6 flov identifier;sin6_addris the 128-bit IPv6 addressin6_scope_ids an ID of depending of
on the scope of the address. It isvrie Linux 2.4. Linux only supports it for link scope addresses, in that
casesin6_scope_idontains the interface indéseenetdevicg7))

The sockaddr_in6structure is bigger than the genesiocckaddr Programs that assume that all address
types can be stored safely irstauct sokaddrneed to be changed to usteuct sokaddr_stoagefor that
instead.

SEE ALSO

cmsg3),ip(7)

SP-Klausur Manual-Auszug 2014-02-13 1

listen(2) listen(2)

NAME
listen - listen for connections on a socket

SYNOPSIS
#include <sys/types.h> /* See NOTES */
#include <sys/socket.h>

int listen(int sockfd int backlog;

DESCRIPTION
listen() marks the socket referred to bgckfdas a passe @cket, that is, as a socket that will be used to
accept incoming connection requests usiogep(2).

The sockfdamgument is a file descriptor that refers to a socket of 8p€K_STREAM or SOCK_SEQ-
PACKET .

The backlogagument defines the maximum length to which the queue of pending connectisnskio

may grav. If a connection request aves when the queue is full, the client may reeei error with an
indication of ECONNREFUSED or, if the underlying protocol supports retransmission, the request may be
ignored so that a later reattempt at connection succeeds.

RETURN VALUE
On success, zero is returned. On errdris eturned, an@rrnois set appropriately.

ERRORS
EADDRINUSE
Another socket is already listening on the same port.
EBADF
The argumensockfdis not a valid descriptor.
ENOTSOCK
The argumensockfdis not a socket.
NOTES

To accept connections, the following steps are performed:
1. Asocket is created withocke(2).

2. Thesoclet is bound to a local address ushbigd(2), so that other sockets may d@mnnec(2)ed
toit.

3. Awillingness to accept incoming connections and a queue limit for incoming connections are
specified witHisten().

4. Connectionsre accepted withccep(2).

If the backlogamgument is greater than the value/fmoc/sys/net/core/somaxcanthen it is silently trun-
cated to that value; the default value in this file is 128.

EXAMPLE
Seebind(2).

SEE ALSO
accep(2), bind(2), connec(2), socke(2), socke(7)

SP-Klausur Manual-Auszug 2014-02-13 1

malloc(3) malloc(3)

NAME
calloc, malloc, free, realloc — Allocate and free dynamic memory

SYNOPSIS
#include <stdlib.h>

void *calloc(size_tnmembsize_tsize);

void *malloc(size_tsize);

void free(void *ptr);

void *realloc(void *ptr, sze_tsize);
DESCRIPTION

calloc() allocates memory for an array mfnembelements okizebytes each and returns a pointer to the
allocated memoryThe memory is set to zero.

malloc() allocatessizebytes and returns a pointer to the allocated menibimg memory is not cleared.

free() frees the memory space pointed topy, which must hee been returned by a previous callrtal-
loc(), calloc() or realloc(). Otherwise, or iffree(ptr) has already been called before, undefined\hetia
occurs. Ifptris NULL , no gperation is performed.

realloc() changes the size of the memory block pointed tgtoyto size bytes. Thecontents will be
unchanged to the minimum of the old andvrszes; newly allocated memory will be uninitializet. ptr
is NULL , the call is equialent tomalloc(size) if size is equal to zero, the call is egplént tofree(ptr).
Unlessptris NULL , it must hare been returned by an earlier callrt@lloc(), calloc() or realloc().

RETURN VALUE
For calloc() andmalloc(), the value returned is a pointer to the allocated memdnigh is suitably aligned
for ary kind of variable, oNULL if the request fails.

free() returns no value.

realloc() returns a pointer to the newly allocated memuatyich is suitably aligned for grkind of variable
and may be different fromtr, or NULL if the request fails. Isizewas equal to 0, either NULL or a
pointer suitable to be passedites() is returned.If realloc() fails the original block is left untouched - it is
not freed or meed.

CONFORMING TO
ANSI-C

SEE ALSO
brk (2), posix_memaligr(3)

SP-Klausur Manual-Auszug 2014-02-13 1

pthread_cond(3) pthread_cond(3)

pthread_cond_init, pthread_cond_degtro pthread_cond_signal, pthread_cond_broadcast,
pthread_cond_wait, pthread_cond_timedwait — operations on conditions

SYNOPSIS

#include <pthread.h>

pthread_cond_tcond= PTHREAD_COND_INITIALIZER;

int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_atty;
int pthread_cond_signal(pthread_cond_t tond);

int pthread_cond_broadcast(pthread_cond_t tond);

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutey;

int pthr ead_cond_timedwait(pthiead_cond_t tond, pthread_mutex_t *mutex const struct timespec
*abstime;

int pthread_cond_destroy(pthread_cond_t tond);

DESCRIPTION

A condition (short for “condition ariable’) is a synchronization device that alls threads to suspengee

cution and relinquish the processors until some predicate on shared data is satisfied. The basic operations
on conditions are: signal the condition (when the predicate becomes true), and wait for the condition, sus-
pending the threadkecution until another thread signals the condition.

A condition variable must alays be associated with a mutex, tmid the race condition where a thread
prepares to wait on a conditioanable and another thread signals the condition just before the first thread
actually waits on it.

pthread_cond_init initializes the condition ariable cond, using the condition attributes specified in
cond_attr, or default attributes ifcond_attris NULL . The LinuxThreads implementation supports no
attributes for conditions, hence tbend_attrparameter is actually ignored.

Variables of type pthread_cond_t can also be initialized statically using the constant
PTHREAD_COND_INITIALIZER

pthread_cond_signalrestarts one of the threads that amtiwg on the condition ariablecond. If no
threads are witing on cond, nothing happens. If seral threads are waiting ocond, exactly one is
restarted, but it is not specified which.

pthread_cond_broadcastrestarts all the threads that are waiting on the conditoiablecond Nothing
happens if no threads are waitingamd.

pthread_cond_waitatomically unlocks thenutex(as perpthread_unlock_mutex) and waits for the con-
dition variablecondto be signaled. The threageeution is suspended and does not consurpeC®u time
until the condition ariable is signaled. Theutexmust be locked by the calling thread on entrance to
pthread_cond_wait Before returning to the calling thregathread_cond_waitre-acquiresnutex(as per
pthread_lock_mutex).

Unlocking the mute and suspending on the con
always acquire the mukebefore signaling the con

on variable is done atomicBliys, if all threads
on, this guarantees that the condition cannot be

SP/SOS1-Klausur Manual-Auszug 2014-02-13 1

pthread_cond(3) pthread_cond(3)

signaled (and thus ignored) between the time a thread locks the andtthe time it waits on the condition
variable.

pthread_cond_timedwaitatomically unlocksnutexand waits orcond, as pthread_cond_waitdoes, but it
also bounds the duration of the waitctindhas not been signaled within the amount of time specified by
abstime the mute mutexis re-acquired ang@thread_cond_timedwait returns the erroETIMEDOUT .
Theabstimeparameter specifies an absolute time, with the same origime(®) andgettimeofday(2): an
abstimeof 0 corresponds to 00:00:00 GMJnuary 1, 1970.

pthread_cond_destroydestrgs a condition variable, freeing the resources it might hold. No threads must
be waiting on the condition variable on entrancettread_cond_destroy In the LinuxThreads imple-
mentation, no resources are associated with condition variablegpttinead_cond_destroyactually does
nothing except checking that the condition has no waiting threads.

CANCELLATION
pthread_cond_wait and pthread_cond_timedwait are cancellation points. If a thread is cancelled while
suspended in one of these functions, the thread immediately resxaneson, then locks again theutex
argument topthread_cond_wait and pthread_cond_timedwait, and finally eecutes the cancellation.
Consequentlycleanup handlers are assured thatexis locked when theare called.

ASYNC-SIGNAL SAFETY
The condition functions are not async-signal safe, and should not be called from a signal Inguedtés-
ular, calling pthread_cond_signalor pthread_cond_broadcastfrom a signal handler may deadlock the
calling thread.

RETURN VALUE
All condition variable functions return 0 on success and a non-zero error code on error.

ERRORS
pthread_cond_init, pthread_cond_signa) pthread_cond_broadcast and pthread_cond_wait never
return an error code.

Thepthread_cond_timedwaitfunction returns the following error codes on error:

ETIMEDOUT
the condition variable was not signaled until the timeout specifiedbsiyme

EINTR
pthread_cond_timedwaitwas interrupted by a signal

Thepthread_cond_destroyfunction returns the following error code on error:

EBUSY
some threads are currently waitingeomd

AUTHOR
Xavier Lerg <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_condattr_init(3), pthread_mutex_lock3), pthread_mutex_unlock3), gettimeofday?2),
nanoslee§2).

SP/SOS1-Klausur Manual-Auszug 2014-02-13 2

pthread_create/pthreacit3) pthread_create/pthreadit¢3)

NAME
pthread_create — create awntread / pthread_exit — terminate the calling thread

SYNOPSIS
#include <pthread.h>

int pthr ead_create(pthead_t * thread, pthread_attr_t * attr, void * (* start_routing(void *), void *
arg);

void pthread_exit(void *retval);

DESCRIPTION
pthread_createcreates a e thread of control thatecutes concurrently with the calling thread. Thevne
thread applies the functicstart_routinepassing itarg as first argument. The wethread terminates either
explicitly, by calling pthread_exit(3), or implicitly, by returning from thestart_routinefunction. The latter
case is equalent to callingpthread_exit(3) with the result returned tstart_routineas exit code.

Theattr agument specifies thread attributes to be applied to thehread. Seethread_attr_init (3) for a
complete list of thread attributes. Tatr agument can also RULL , in which case default attributes are
used: the created thread is joinable (not detached) and has default (non real-time) schedyling polic

pthread_exit terminates thexecution of the calling threadAll cleanup handlers that te been set for the
calling thread withpthread_cleanup_puslif3) are &ecuted in reerse order (the most recently pushed han-
dler is executed first). Finalization functions for thread-specific data are then called fayalthat hae
non-NULL values associated with them in the calling thread fgbeead_key_creaté3)). Finally exe-
cution of the calling thread is stopped.

The retval amgument is the return value of the thread. It can be consulted from another thread using
pthread_join(3).

RETURN VALUE
On success, the identifier of thewhg created thread is stored in the location pointed bythteaad argu-
ment, and a O is returned. On er@ron-zero error code is returned.

The pthread_exit function neer returns.

ERRORS
EAGAIN
not enough system resources to create a process fomitibread.

EAGAIN
more tharPTHREAD_THREADS_MAX threads are already acti

AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_join(3), pthread_detach(3), pthread_attr_init (3).

SP-Klausur Manual-Auszug 2014-02-13 1

pthread_detach(3) pthread_detach(3)

NAME
pthread_detach — put a running thread in the detached state
SYNOPSIS
#include <pthread.h>
int pthread_detach(pthread_t th);
DESCRIPTION
pthread_detach put the threadh in the detached state. This guarantees that the memory resources con-
sumed byth will be freed immediately wheth terminates. Havever, this prevents other threads from syn-
chronizing on the termination ¢ usingpthread_join.
A thread can be created initially in the detached state, usimtpthehstateattribute topthread_creatg3).
In contrastpthread_detachapplies to threads created in the joinable state, and which need to be put in the
detached state later.
After pthread_detachcompletes, subsequent attempts to perfptimead_join on th will fail. If another
thread is already joining the thretidat the timepthread_detachis called,pthread_detachdoes nothing
and leaesth in the joinable state.
RETURN VALUE
On success, 0 is returned. On ereomn-zero error code is returned.
ERRORS
ESRCH
No thread could be found corresponding to that specifigd by
EINVAL
the threadh is already in the detached state
AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>
SEE ALSO
pthread_creatg3), pthread_join(3), pthread_attr_setdetachstaté3).
SP/SOS1-Klausur Manual-Auszug 2014-02-13 1

pthread_mute(3) pthread_mutg3)

pthread_mute_init, pthread_mutex_lock, pthread_mutex_trylock, pthread_xnutdock,
pthread_mutex_destyo- operations on muies

SYNOPSIS

#include <pthread.h>

pthread_mutex_t fastmutex- PTHREAD_MUTEX_INITIALIZER,;
pthread_mutex_trecmutex= PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
pthread_mutex_t errchkmutex= PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
int pthread_mutex_init(pthread_mutex_t *mutex const pthread_mutexattr_t *mutexatt);
int pthread_mutex_lock(pthread_mutex_t *mutey);

int pthread_mutex_trylock(pthread_mutex_t *mute;

int pthread_mutex_unlock(pthread_mutex_t *mutey);

int pthread_mutex_destroy(pthread_mutex_t ‘mutey;

DESCRIPTION

A mutex is a MUTual EXclusion device, and is useful for protecting shared data structures from concurrent
modifications, and implementing critical sections and monitors.

A mutex has two possible states: unlocked (not owned by #hread), and locked (owned by one thread). A
mutex can neer be avned by tvo different threads simultaneousky thread attempting to lock a mute
that is already locked by another thread is suspended until the owning thread unlocks:tiigsnute

pthread_mutex_init initializes the mute object pointed to bymutexaccording to the mukeattributes
specified ilfmutexattr If mutexattris NULL , default attributes are used instead.

The LinuxThreads implementation supports only one mat&ibutes, themutex kind, which is either
“fast”, “‘recursive”, or “error checking”. The kind of a mutedetermines whether it can be lockediag
by a thread that already owns it. The default kindfast”. See pthread_mutexattr_init(3) for more
information on mute attributes.

Variables of type pthread_mutex_t can also be initialized staticallyusing the constants
PTHREAD_MUTEX_INITIALIZER (for fast mutges), PTHREAD_RECURSIVE_MUTEX_INI-
TIALIZER_NP (for recursie nutexes), and PTHREAD_ERRORCHECK_MUTEX_INITIAL-
IZER_NP (for error checking mutes).

pthread_mutex_lock locks the gien mutex. If the mute is currently unlocled, it becomes locked and
owned by the calling thread, apthread_mutex_lockreturns immediatelyif the mute is dready locled
by another threaghthread_mutex_locksuspends the calling thread until the mugeunlocked.

If the mutex is dready locked by the calling thread, the bebaof pthread_mutex_lock depends on the
kind of the mutex. If the muteis of the ‘fast” kind, the calling thread is suspended until the mise
unlocked, thus dectively causing the calling thread to deadlock. If the museof the “error checking’
kind, pthread_mutex_lock returns immediately with the error coB®EADLK . If the mute is of the
“recursve” kind, pthread_mutex_lock succeeds and returns immediategcording the number of times
the calling thread has loel the mutex. An equal number mthread_mutex_unlock operations must be

SP/SOS1-Klausur Manual-Auszug 2014-02-13 1

pthread_mute(3) pthread_mutg3)

performed before the muteeturns to the unlocked state.

pthread_mutex_trylock behaes identically topthread_mutex_lock except that it does not block the
calling thread if the muteis dready locked by another thread (or by the calling thread in the case of a
“fast” mutex). Insteadpthread_mutex_trylock returns immediately with the error coHBUSY.

pthread_mutex_unlock unlocks the gien mutex. The mute is assumed to be locked and owned by the
calling thread on entrance tpthread_mutex_unlock If the mute is of the ‘fast” Kind,
pthread_mutex_unlock always returns it to the unloekl state. If it is of the'recursive” kind, it decre-
ments the locking count of the mutéhumber ofpthread_mutex_lock operations performed on it by the
calling thread), and only when this count reaches zero is thex amitelly unlocked.

On “error checking’ mutexes, pthread_mutex_unlock actually checks at run-time that the muts
locked on entrance, and that it was locked by the same thread that éslting pthread_mutex_unlock
If these conditions are not met, an error code is returned and the ramtains unchanged: Fast” and
“recursve” mutexes perform no such checks, thus aliag a locked muteto be wlocked by a thread
other than its ownefhis is non-portable behavior and must not be relied upon.

pthread_mutex_destroydestrys a mutg object, freeing the resources it might hold. The muest be
unlocked on entrance. In the LinuxThreads implementation, no resources are associated witljetts
thuspthread_mutex_destroyactually does nothing except checking that the ristenlocked.

RETURN VALUE
pthread_mutex_init always returns 0. The other mutéunctions return 0 on success and a non-zero error
code on error.

ERRORS
The pthread_mutex_lockfunction returns the following error code on error:

EINVAL
the muta has not been properly initialized.

EDEADLK
the muta is dready locked by the calling thread (“error checkingutexes anly).

Thepthread_mutex_unlockfunction returns the following error code on error:

EINVAL
the mute has not been properly initialized.

EPERM
the calling thread does not own the nxuteerror checking’mutexes anly).

The pthread_mutex_destroyfunction returns the following error code on error:

EBUSY
the muta is currently locked.

AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_mutexattr_init (3), pthread_mutexattr_setkind_np(3), pthread_cance(3).

SP/SOS1-Klausur Manual-Auszug 2014-02-13 2

stat(2) stat(2)
NAME

stat, fstat, Istat — get file status
SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char *path, struct stat * buf);
int fstat(int fd, struct stat * buf);
int Istat(const char *path, struct stat * buf);

Feature Test Macro Requirements for glibc (se¢ure_test_macro$7)):

Istat(): _BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION

These functions return information about a file. No permissions are required on the filetitselfirbthe
case ofstat() andlstat() — execute (search) permission is required on all of the directoripaththat lead
to the file.

stat() stats the file pointed to Ipathand fills inbuf .

Istat() is identical tostat(), except that ipathis a symbolic link, then the link itself is stat-ed, not the file
that it refers to.

fstat() is identical tostat(), except that the file to be stat-ed is specified by the file desduptor
All of these system calls returrstatstructure, which contains the following fields:

struct stat {
dev_t st dev; /%D of device containing file */
ino_t st_ino; /*inode number */
mode_t st_mode; /protection */
nlink_t st_nlink; /*number of hard links */
uid_t [*user ID of owner */
gid_t I*group ID of owner */
dev_t st rde; /* device ID (if special file) */
off t st_size; /*total size, in bytes */
blksize_t st_blksize; /* blocksize for file system 1/0 */
blkent_t st_blocks; /Mumber of blocks allocated */
time_t st_atime;/* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

I8

Thest_defield describes the device on which thi

ile resides.
Thest_rdevfield describes the device that this file (inode) represents.

The st_sizefield gives the size of the file (if it is a regular file or a symbolic link) in bytes. The size of a
symlink is the length of the pathname it contains, without a trailing null byte.

The st_blocksfield indicates the number of blocks allocated to the file, 512-byte ufiitdis may be
smaller tharst_sizé512 when the file has holes.)

Thest_blksizdield gives the "preferred” blocksize for fédient file system 1/0. (Writing to a file in smaller
chunks may cause an inefficient read-modify-rewrite.)

SP-Klausur Manual-Auszug 2014-02-13 1

stat(2)

stat(2)

Not all of the Linux file systems implement all of the time fields. Some file system typgswalmting in
such a way that file accesses do not cause an updatesofdlimefield. (Seé'noatime" inmount(8).)

The fieldst_atimeis changed by file accesses, for exampleexscvé2), mknod(2), pipe(2), utime(2) and
read(2) (of more than zero bytes). Other routines, tik@ap(2), may or may not updagt_atime

The fieldst_mtimes changed by file modifications, for example,rhnod(2), truncate(2), utime(2) and
write (2) (of more than zero bytesMoreover, st_mtimeof a directory is changed by the creation or dele-
tion of files in that directory The st_mtimefield is not changed for changes irwaer, group, hard link
count, or mode.

The fieldst_ctimeis changed by writing or by setting inode information (i.evner, group
mode, etc.).

The following POSIX macros are defined to check the file type usirg_theoddield:

S_ISREG(m) isit a regular file?

S_ISDIR(m) directory?

S_ISCHR(m) charactedevice?

S_ISBLK(m) blockdevice?

S_ISFIFO(m) FIFO(named pipe)?

S_ISLNK(m) symboliclink? (Not in POSIX.1-1996.)

S ISSOCKm) soclet? (Not in POSIX.1-1996.)

RETURN VALUE

On success, zero is returned. On errdris returned, an@rrnois set appropriately.

ERRORS
EACCES
Search permission is denied for one of the directories in the path prefiattof (See also
path_resolution(7).)
EBADF
fdis bad.
EFAULT
Bad address.
ELOOP
Too mary symbolic links encountered while trarsing the path.
ENAMETOOLONG
File name too long.
ENOENT
A component of the pathathdoes not exist, or the path is an empty string.
ENOMEM
Out of memory (i.e., kernel memory).
ENOTDIR
A component of the path is not a directory.
SEE ALSO

acces§), chmod(2), chown(2), fstatat(2), readlink (2), utime(2), capabilities(7), symlink(7)

SP-Klausur Manual-Auszug 2014-02-13 2

