alarm(2) alarm(2)

NAME
alarm - set an alarm clock for dediy of a signal

SYNOPSIS
#include <unistd.h>

unsigned int alarm(unsigned intsecond}

DESCRIPTION
alarm() arranges for 8IGALRM signal to be deliered to the calling process secondseconds.

If secondss zero, no nevalarm() is scheduled.

In ary event ary previously setilarm() is canceled.

RETURN VALUE
alarm() returns the number of seconds remaining unil@eviously scheduled alarm was due to bevdeli
ered, or zero if there was no previously scheduled alarm.

CONFORMING TO
SVr4, POSIX.1-2001, 4.3BSD.

SP-Klausur Manual-Auszug 2013-07-23 1

opendir/readdir(3) opendir/readdir(3)

NAME
opendir — open a directory / readdir — read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>
DIR *opendir(const char *name);

struct dirent *readdir(DIR * dir);
int readdir_r(DIR * dirp, struct dirent * entry, struct dirent ** result);

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the directong and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to lalr. It returns NULL on reaching the end-of-file or if an error occurred.

DESCRIPTION readdir_r
Thereaddir_r() function initializes the structure referenced egtry and storesa pointer to this structure
in result On successful return, the pointer returned@ssult will have the samevalue as the agument
entry. Upon reaching the end of the directory stream, this pointer wid the value NULL.

The data returned bseaddir() is overwritten by subsequent calls teaddir() for the same directory
stream.

Thedirentstructure is defined as follows:

struct dirent {

long d_ino; [* inode number */
off_t d_of; /* offset to the next dirent */
unsigned shord_reclen; /Mength of this record */
unsigned chard_type; [*type of file */
char d_name[256]; /* filename */
h
RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

readdir_r() returns Qf successful or an error number to indicate failure.

ERRORS
EACCES
Permission denied.
ENOENT
Directory does not exist, mameis an empty string.
ENOTDIR
nameis not a directory.
SP-Klausur Manual-Auszug 2013-07-23 1

fork(2) fork(2)

NAME
fork — create a child process

SYNOPSIS
#include <unistd.h>

pid_t fork(void);

DESCRIPTION
fork () creates a meprocess by duplicating the calling process. The pecess, referred to as tbhild, is
an exact duplicate of the calling process, referred to gsatieat except for the following points:

* The child has its own unique process ID, and this PID does not match the IR efistimg process
group etpgid2)).

* The childs parent process ID is the same as the par@rdtess ID.

* The child does not inherit its parentremory locks ifilock(2), mlockall(2)).

* Process resource u
child.

* The childs =t of pending signals is initially emptgigpending2)).

ationgetrusagg2)) and CPU time countersirGes(2)) are reset to zero in the

* The child does not inherit semaphore adjustments from its pagmnof(2)).
* The child does not inherit record locks from its parésrit((2)).
* The child does not inherit timers from its paresgtitimer(2), alarm(2), timer_create(2)).

* The child does not inherit outstanding asynchronous 1/O operations from its pairenedd3),
aio_write(3)), nor does it inherit 3nesynchronous 1/O contexts from its parent (gesetup(2)).

The process attriltes in the preceding list are all specified in POSIX.1-2001. The parent and child also
differ with respect to the following Linux-specific process attributes:

* The child does not inherit directory change notifications (dnotify) from its parent (see the description of
F_NOTIFY in fentl (2)).

* Theprctl (2) PR_SET_PDEATHSIG setting is reset so that the child does not wecaiggnal when its
parent terminates.

* Memory mappings that tia been marked with thenadvisq2) MADV_DONTFORK flag are not
inherited across fark ().

* The termination signal of the child isnalys SIGCHLD (seeclong(2)).
Note the following further points:

* The child process is created with a single thread — the one thatfcakéd Theentire virtual address
space of the parent is replicated in the child, including the states afes\utendition variables, and
other pthreads objects; the useptifread_atfork (3) may be helpful for dealing with problems that this
can cause.

* The child inherits copies of the parent:t of open file descriptors. Each file descriptor in the child
refers to the same open file description (@een(2)) as the corresponding file descriptor in the parent.
This means that the twdescriptors share open file status flags, current file offset, and sigrenl-d©
attributes (see the descriptionfof SETOWN andF_SETSIGin fcntl (2)).

* The child inherits copies of the parenget of open message queue descriptors rtageoverview(7)).
Each descriptor in the child refers to the same open message queue description as the corresponding
descriptor in the parent. This means that the descriptors share the same flagey(flag3.

* The child inherits copies of the parengt of open directory streams (sggendir(3)). POSIX.1-2001
says that the corresponding directory streams in the parent andnzhyilshare the directory stream
positioning; on Linux/glibc thedo rot.

SP-Klausur Manual-Auszug 2013-07-23 1

fork(2) fork(2)

RETURN VALUE
On success, the PID of the child process is returned in the parent, and 0 is returned in the cildreOn f
-1is returned in the parent, no child process is createdramalis set appropriately.
ERRORS
EAGAIN
fork () cannot allocate sufficient memory to gape parens page tables and allocate a task struc-
ture for the child.

EAGAIN
It was not possible to create amnprocess because the calleRLIMIT_NPROC resource limit
was encountered. @ exceed this limit, the process mustvhadther theCAP_SYS_ADMIN or
the CAP_SYS_RESOURCEcapability.

ENOMEM
fork () failed to allocate the necessary kernel structures because memory is tight.

CONFORMING TO
SVr4, 4.3BSD, POSIX.1-2001.

NOTES
Under Linux,fork () is implemented using copy-on-write pages, so the only penalty that it incurs is the time
and memory required to duplicate the paeptige tables, and to create a unique task structure for the
child.

Since version 2.3.3, rather tharvaking the lernel’sfork () system call, the glibéork () wrapper that is
provided as part of the NPTL threading implementatiorokes cloneg(2) with flags that provide the same
effect as the traditional system call. The glibc wrappeskes any fork handlers that lva keen established
usingpthread_atfork (3).

EXAMPLE
Seepipe(2) andwait(2).

SEE ALSO
clong(2), execvg2), setrlimit(2), unshareg(2), vfork (2), wait(2), daemon(3), capabilities(7), creden-
tials(7)

COLOPHON
This page is part of release 3.27 of the Limen-payes project. Adescription of the project, and informa-
tion about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.

SP-Klausur Manual-Auszug 2013-07-23 2

gets(3) gets(3)

NAME
gets, fgets — get a string from a stream
fputs, puts — output of strings

SYNOPSIS
#include <stdio.h>

char *gets(char *s);

char *fgets(char *s, int n, FILE *strean);
int fputs(const char *s, FILE * strean);
int puts(const char *s);

DESCRIPTION gets/fgets
The gets() function reads characters from the standard input streaninfse€3)), stdin, into the array
pointed to bys, until a nevline character is read or an end-of-file condition is encountered. Timae
character is discarded and the string is terminated with a null character.

The fgets() function reads characters from thigeaminto the array pointed to bg; until n—1 characters
are read, or a newline character is read and transferszdit@an ed-of-file condition is encounteredhe
string is then terminated with a null character.

When usinggets() if the length of an input line exceeds the sizs, dfideterminate behavior may result.
For this reason, it is strongly recommended thets()be avoided in fvar of fgets()

RETURN VALUES
If end-of-file is encountered and no charactergeHhaen read, no characters are transferredaiod a null
pointer is returned. If a read error occurs, such as trying to use these functions on a file that has not been
opened for reading, a null pointer is returned and the error indicator for the stream is set. If end-of-file is
encountered, theOF indicator for the stream is set. Otherwssis returned.

ERRORS
Thegets()andfgets()functions

fai
EOVERFLOW The file is a regular file and an attempt was made to read ayandéhe offset maxi-
mum associated with the correspondstigam

data needs to be read and:

DESCRIPTION puts/fputs
fputs() writes the strings to stream without its tr:

ng'\0’.
puts() writes the string and a trailing newline tetdout

Calls to the functions described here can beethirith each other and with calls to other output functions
from thestdio library for the same output stream.

RETURN VALUE
puts() andfputs() return a non - rggtive rumber on success, BOF on error.

SP-Klausur Manual-Auszug 2013-07-23 1

KILL(2) KILL(2)

NAME

Il - send signal to a process

SYNOPSIS
#include <sys/types.h>
#include <signal.h>

int kill(pid_t pid, int sig);

Feature Test Macro Requirements for glibc fee¢ure_test_macro$7)):

kil (): _POSIX_C_SOURCE >= 1

DESCRIPTION
Thekill () system call can be used to seng signal to aly process group or process.

_XOPEN_SOURCE || _POSIX_SOURCE

If pidis positive, then signakigis sent to the process with the ID specifieglay
If pid equals 0, thesigis sent to eery process in the process group of the calling process.

If pid equals -1, thesigis sent to eery process for which the calling process has permission to send sig-
nals, except for process ihif), but see bela.

If pidis less than -1, thesigis sent to eery process in the process group whose |Bpisl.

If sigis 0, then no signal is senytlerror checking is still performed; this can be used to check foxige e
tence of a process ID or process group ID.

For a process to hae permission to send a signal it must either b&ilpdged (under Linux: hae te
CAP_KILL capability), or the real or fefctive wser ID of the sending process must equal the realved sa
set-useilD of the target process. In the caseSt&CONT it suffices when the sending and receiving pro-
cesses belong to the same session.

RETURN VALUE
On success (at least one signal was sent), zero is retu@meerror -1 is returned, aneérrnois set appro-
priately.
ERRORS
EINVAL
An invalid signal was specified.
EPERM
The process does notueapermission to send the signal toyaf the target processes.
ESRCH
The pid or process group does naise Notethat an existing process might be a zombie, a
process which already committed termination, but has not yetisg2)ed for.
SP-Klausur Manual-Auszug 2013-07-23 1

sigaction(2) sigction(2)

NAME

sigaction — POSIX signal handling functions.

SYNOPSIS

#include <signal.h>

int sigaction(int signum const struct sigaction *act, struct sigaction *oldact);

DESCRIPTION

Thesigactionsystem call is used to change the action taken by a process on receipt of a specific signal.
signumspecifies the signal and can beg &alid signal excepBIGKILL andSIGSTOP.

If actis non—null, the ne action for signakignumis installed fromact. If oldactis non-null, the pndous
action is seed in oldact

Thesigactionstructure is defined as something like

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);
}

On some architectures a union igdlved - do not assign to bo#a_handlerandsa_sigaction

The sa_restorerelement is obsolete and should not be use@SIX does not specify sa_restorerele-
ment.

sa_handlerspecifies the action to be associated wignumand may beSIG_DFL for the defult action,
SIG_IGN to ignore this signal, or a pointer to a signal handling function.
sa_maslgives a mask of signals which should be blocked durimgcetion of the signal handletn addi-
tion, the signal which triggered the handler will be blocked, unlesSAh&lODEFER or SA_NOMASK
flags are used.
sa_flagsspecifies a set of flags which modify the babar of the signal handling process. It is formed by
the bitwise OR of zero or more of the following:
SA_NOCLDSTOP
If signumis SIGCHLD, do rot receve rotification when child processes stop (i.e., when
child processes reae ame of SIGSTOP, SIGTSTP, SIGTTIN or SIGTTOU).
SA_RESTART

Provide behaviour compatible with BSD signal semantics by making certain system calls
restartable across signals.

RETURN VALUES

sigactionreturns 0 on success and -1 on error.

ERRORS

EINVAL
An invalid signal was specified. This will also be generated if an attempt is made to change the
action forSIGKILL or SIGSTOP, which cannot be caught.

SEE ALSO

kill (1), kill (2), killpg (2), paus€?2), sigsetop$3),

SP-Klausur Manual-Auszug 2013-07-23 1

sigsuspend/sigprocmask(2) sigsuspend/sigprocmask(2)

NAME
sigprocmask — change and/or examine callgghal mask
sigsuspend - install a signal mask and suspend caller until signal

SYNOPSIS
#include <signal.h>

int sigprocmask(int how, const sigset_t set, sigset_t *ose);
int sigsuspend(const sigset_tsey;

DESCRIPTION sigprocmask
The sigprocmask() function is used toxamine and/or change the caltedgnal mask. If the value is
SIG_BLOCK, the set pointed to by thegamentsetis added to the current signal madkthe value is
SIG_UNBLOCK, the set pointed by thegumentsetis remaed from the current signal mask. If thalue
is SIG_SETMASK, the current signal mask is replaced by the set pointed to by ghmentset If the
argumenbsetis notNULL, the previous mask is stored in the space pointed twsbéy If the value of the
argumentsetis NULL, the valuehowis not significant and the callsrdgnal mask is unchanged; thus, the
call can be used to inquire about currently blocked signals.

If there are aypending unblocked signals after the calstgprocmask() at least one of those signals will
be delvered before the call tsigprocmask()returns.

It is not possible to block those signals that cannot be ignored this restriction is silently imposed by the sys-
tem. Seesigaction(2).

If sigprocmask()fails, the callers sgnal mask is not changed.
RETURN VALUES

On successigprocmask()returns0. On failure, it returns-1 and set®rrno to indicate the error.
ERRORS

sigprocmask()fails if any of the following is true:

EFAULT setor osetpoints to an illgd address.

EINVAL The value of théhowargument is not equal to one of the defined values.

DESCRIPTION sigsuspend
sigsuspend(yeplaces the calles’sgnal mask with the set of signals pointed to by tlierentsetand
then suspends the caller until getiy of a signal whose action is either teeeute a signal catching func-
tion or to terminate the process.

If the action is to terminate the procesgsuspend()does not returnlf the action is to xecute a signal
catching functionsigsuspend()returns after the signal catching function returns. On return, the signal
mask is restored to the set that existed before the cajgospend()
It is not possible to block those signals that cannot be ignoredsiggea(5)); this restriction is silently
posed by the system.
RETURN VALUES

Sincesigsuspend(suspends procesgeeution indefinitely there is no successful completion retuatue.

On failure, it returns —1 and seggno to indicate the error.
ERRORS

sigsuspend(fails if either of the following is true:

EFAULT setpoints to an illga address.
EINTR A signal is caught by the calling process and control is returned from the signal catching
function.
SEE ALSO

sigaction(2), sigsetop$3C),

SP-Klausur Manual-Auszug 2013-07-23 1

sigsetops(3C) sigsetops(3C)

NAME
sigsetops, sigemptyset, sigfillset, sigaddset, sigdelset, sigismember — manipulate sets of signals

SYNOPSIS
#include <signal.h>

int sigemptyset(sigset_t $ef);

int sigfillset(sigset_t *sef);

int sigaddset(sigset_t $et int signo);

int sigdelset(sigset_t $et, int signo);

int sigismember(sigset_t $et, int signo);

DESCRIPTION
These functions manipulagigset_tdata types, representing the set of signals supported by the implemen-
tation.

sigemptyset()initializes the set pointed to Isgtto exclude all signals defined by the system.
sigfillset()initializes the set pointed to Isgtto include all signals defined by the system.
sigaddset()adds the individual signal specified by the valusigiioto the set pointed to tset
sigdelset()deletes the individual signal specified by the valusigriofrom the set pointed to kset

sigismember()checks whether the signal specified by the valuggsfois a member of the set pointed to
by set

Any object of typesigset_tmust be initialized by applying eithasigemptyset()or sigdfillset() before
applying ay other operation.

RETURN VALUES
Upon successful completion, teegismember()function returns aalue of one if the specified signal is a
member of the specified set, or a value of 0 if it is not. Upon successful completion, the other functions
return a value of 0. Otherwise a value of —1 is returnedeam is set to indicate the error.

ERRORS
sigaddset() sigdelset() and sigismember()will fail if the following is true:

EINVAL The value of theignoargument is not a valid signal number.
sigfillset() will fail if the following is true:
EFAULT Thesetargument specifies anvilid address.

SEE ALSO
sigaction(2), sigpending2), sigprocmask2), sigsuspen@?), attributes(5), signal(5)

SP-Klausur Manual-Auszug 2013-07-23 1

stat(2) stat(2)

NAME
stat, fstat, Istat — get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

t stat(const char *path, struct stat * buf);
t fstat(int fd, struct stat * buf);
int Istat(const char *path, struct stat * buf);

Feature Test Macro Requirements for glibc fee¢ure_test_macro$7)):

Istat(): _BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
These functions return information about a file. No permissions are required on the filetitseffirbthe
case ofstat() andlstat() — execute (search) permission is required on all of the directoripaththat lead
to the file.

stat() stats the file pointed to fpathand fills inbuf .

Istat() is identical tostat(), except that ipathis a symbolic link, then the link itself is stat-ed, not the file
that it refers to.

fstat() is identical tostat(), except that the file to be stat-ed is specified by the file desduptor
All of these system calls returrstatstructure, which contains the following fields:

struct stat {
dev_t st dev; /%D of device containing file */
ino_t st_ino; /*inode number */
mode_t st_mode; /protection */
nlink_t st_nlink; /*number of hard links */
uid_t st_uid; /*user ID of owner */
gid_t st_gid; /*group ID of owner */
dev_t st rde; /* device ID (if special file) */
off t st_size; /*total size, in bytes */
blksize_t st_blksize; /* blocksize for file system 1/0 */
blkent_t st_blocks; /MmMumber of blocks allocated */
time_t st_atime;/* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

I3

Thest_defield describes the device on which this file resides.
Thest_rdevfield describes the device that this file (inode) represents.

The st_sizefield gives the size of the file (if it is a regular file or a symbolic link) in bytes. The size of a
symlink is the length of the pathname it contains, without a trailing null byte.

The st_blocksfield indicates the number of blocks allocated to the file, 512-byte ufiitéis may be
smaller tharst_sizé512 when the file has holes.)

Thest_blksizdield gives the "preferred” blocksize for fedient file system 1/0. (Writing to a file in smaller
chunks may cause an inefficient read-modify-rewrite.)

SP-Klausur Manual-Auszug 2013-07-23 1

stat(2) stat(2)

Not all of the Linux file systems implement all of the time fields. Some file system typegswalmting in
such a way that file accesses do not cause an updatesofdlimefield. (Seé'noatime" inmount(8).)

The fieldst_atimeis changed by file accesses, for exampleexscvé2), mknod(2), pipe(2), utime(2) and
read(2) (of more than zero bytes). Other routines, tikmap(2), may or may not updagt_atime

The fieldst_mtimes changed by file modifications, for example,rbynod(2), truncate(2), utime(2) and
write (2) (of more than zero bytesMoreover, st_mtimeof a directory is changed by the creation or dele-
tion of files in that directory The st_mtimefield is not changed for changes iwaer, group, hard link
count, or mode.

The field st_ctimeis changed by writing or by setting inode information (i.evner, group, link count,

mode, etc.).
The following POSIX macros are defined to check the file type usirg_theoddield:
S_ISREG(m) isit a regular file?
S_ISDIR(m) directory?
S_ISCHR(m) charactedevice?
S_ISBLK(m) blockdevice?
S_ISFIFO(m) FIFO(named pipe)?
S_ISLNK(m) symboliclink? (Not in POSIX.1-1996.)

S ISSOCKm) soclet? (Not in POSIX.1-1996.)

RETURN VALUE
On success, zero is returned. On errdris returned, an@rrnois set appropriately.

ERRORS
EACCES
Search permission is denied for one of the directories in the path prefiatiof (See also
path_resolution(7).)
EBADF
fdis bad.
EFAULT
Bad address.
ELOOP
Too mary symbolic links encountered while trarsing the path.
ENAMETOOLONG
File name too long.
ENOENT
A component of the pathathdoes not exist, or the path is an empty string.
ENOMEM
Out of memory (i.e., kernel memory).

ENOTDIR
A component of the path is not a directory.

SEE ALSO
acces§), chmod(2), chown(2), fstatat(2), readlink (2), utime(2), capabilities(7), symlink(7)

SP-Klausur Manual-Auszug 2013-07-23 2

waitpid(2) waitpid(2)

NAME
waitpid — wait for child process to change state

SYNOPSIS

#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int * stat_log int options;

DESCRIPTION
waitpid() suspends the calling process until one of its children changes state; if a child process changed
state prior to the call tevaitpid(), return is immediatepid specifies a set of child processes for which sta-
tus is requested.

If pidis equal tapid_t)-1, satus is requested for aphild process.

If pid is greater tharfpid_t)0, it specifies the proces® of the child process for which status is
requested.
If pid is equal tapid_t)0 status is requested foryachild process whose process grabgs equal
to that of the calling process.
If pid is less thar(pid_t)-1, status is requested for yarhild process whose process grdDpis
equal to the absolute valuemtl.
If waitpid() returns because the status of a child processiialale, then that status may besleiated with
the macros defined hystat(5). If the calling process had specified a non-zetloe ofstat_log the status
of the child process will be stored in the location pointed tstaty loc
The optionsargument is constructed from the bitwise inckesDR of zero or more of the following flags,
defined in the headesys/wait.h>

WCONTINUED The status of gncontinued child process specified pig, whose status has not
been reported since it continued, is also reported to the calling process.

WNOHANG waitpid() will not suspend xecution of the calling process if status is not imme-
diately available for one of the child processes specifiegbioly

WNOWAIT Keep the process whose status is returnedtan locin a waitable state. The
process may be waited for again with identical results.

RETURN VALUES
If waitpid() returns because the status of a child processilglale, this function returns aaiue equal to
the procestD of the child process for which status is reportédwaitpid() returns due to the deéry of a
signal to the calling processy is returned an@rrno is set toEINTR. If this function was iwoked with
WNOHANG set inoptions it has at least one child process specifiegildyfor which status is notailable,
and status is notvailable for ary process specified bgid, O is returned. Otherwise,~1 is returned, and
errno is set to indicate the error.

ERRORS
waitpid() will fail if one or more of the following is true:

ECHILD The process or process group specifieghibydoes not ist or is not a child of the call-
ing process or can wer be in he states specified lmptions
EINTR waitpid() was interrupted due to the receipt of a signal sent by the calling process.
EINVAL An invalid value was specified faptions.
SEE ALSO

exeq?2), exit(2), fork (2), sigaction(2), wstat(5)

SP-Klausur Manual-Auszug 2013-07-23 1

