opendir/readdir(3) opendir/readdir(3)

NAME
opendir — open a directory / readdir — read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>
DIR *opendir(const char *name);

struct dirent *readdir(DIR * dir);
int readdir_r(DIR * dirp, struct dirent * entry, struct dirent ** result);

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the directong and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to lalr. It returns NULL on reaching the end-of-file or if an error occurred.

DESCRIPTION readdir_r
Thereaddir_r() function initializes the structure referenced egtry and storesa pointer to this structure
in result On successful return, the pointer returned@sult will have the samevalue as the agument
entry. Upon reaching the end of the directory stream, this pointer wid the value NULL.

The data returned bgeaddir() is overwritten by subsequent calls teaddir() for the same directory
stream.

Thedirentstructure is defined as follows:

struct dirent {

long d_ino; [* inode number */
off_t d_of; /* offset to the next dirent */
unsigned shord_reclen; /Mength of this record */
unsigned chard_type; [*type of file */
char d_name[256]; /* filename */
h
RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

readdir_r() returns Qf successful or an error number to indicate failure.

ERRORS
EACCES
Permission denied.
ENOENT
Directory does not exist, mameis an empty string.
ENOTDIR
nameis not a directory.
SP-Klausur Manual-Auszug 2013-02-15 1

fopen/fdopenf/fileno(3) fopen/fdopenffileno(3)

NAME
fopen, fdopen, fileno - stream open functions

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * path, const char *mode);
FILE *fdopen(int fildes const char *modg);
int fileno(FILE * strean);

DESCRIPTION
Thefopen function opens the file whose name is the string pointed athyand associates a stream with
it.

The agumentmodepoints to a string lggnning with one of the following sequences (Additional characters
may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.
r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned agiheitg
of the file.

w+ Open for reading and writing. The file is created if it does rist,eotherwise it is truncatedlhe
stream is positioned at the beginning of the file.

a Open for appending (writing at end of fileJhe file is created if it does natist. Thestream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it doegistot e
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descrifittes The modeof the stream
(one of the alues a+") must be compatible with the mode of the file descriptor
The file position indicator of the mestream is set to that belonging fitsles and the error and end-of-file
indicators are clearedModes "w" or "w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream creatdddyyenis closed. The result of applyifidopento a
shared memory object is undefined.

The functiorfileno() examines the argumestreamand returns its integer descriptor.

RETURN VALUE
Upon successful completioiopen, fdopen and freopen return aFILE pointer Otherwise,NULL is
returned and the global variatg@ernois set to indicate the error.
ERRORS
EINVAL
Themodeprovided tofopen, fdopen, or freopenwas invaid.

Thefopen, fdopen andfreopen functions may also fail and setrno for ary of the errors specified for the
routinemalloc(3).

Thefopen function may also fail and setrnofor ary of the errors specified for the routiopen(2).
Thefdopen function may also fail and setrno for ary of the errors specified for the routifentl (2).

SEE ALSO
open(2), fclosg3), fileno(3)

SP-Klausur Manual-Auszug 2013-02-15 1

FREAD(3) FREAD(3)

NAME
fread, fwrite — binary stream input/output

SYNOPSIS
#include <stdio.h>

size_t fread(void *ptr, size_tsize size_tnmembFILE * strean);
size_t fwrite(const void *ptr, size_t size size_tnmemb
FILE * strean);

DESCRIPTION
The functionfread() readsnmembelements of data, eadizebytes long, from the stream pointed to by
stream storing them at the location\gin by ptr.

The functionfwrite () writes nmembelements of data, eadize bytes long, to the stream pointed to by
stream obtaining them from the locationvgn by ptr.

For nonlocking counterparts, sealocked_stdiq(3).

RETURN VALUE
fread() andfwrite () return the number of items successfully read or written (i.e., not the number of charac-
ters). Ifan error occurs, or the end-of-file is reached, the return value is a short item count (or zero).

fread() does not distinguish between end-of-file and emod callers must usteof(3) andferror (3) to
determine which occurred.

CONFORMING TO
C89, POSIX.1-2001.

SEE ALSO
read(2), write (2), feof(3), ferror (3), unlocked_stdiq3)

SP-Klausur Manual-Auszug 2013-02-15 1

malloc(3) malloc(3)

NAME

calloc, malloc, free, realloc — Allocate and free dynamic memory

SYNOPSIS

#include <stdlib.h>

void *calloc(size_tnmembsize_tsize);
void *malloc(size_tsize);

void free(void *ptr);

void *realloc(void *ptr, sze_tsize);

DESCRIPTION

calloc() allocates memory for an array mfnembelements okizebytes each and returns a pointer to the
allocated memoryThe memory is set to zero.

malloc() allocatessizebytes and returns a pointer to the allocated menibimg memory is not cleared.

free() frees the memory space pointed topy, which must hee been returned by a preus call tomal-
loc(), calloc() or realloc(). Otherwise, or iffree(ptr) has already been called before, undefined\hetia
occurs. Ifptris NULL , no gperation is performed.

realloc() changes the size of the memory block pointed tgtoyto size bytes. Thecontents will be
unchanged to the minimum of the old andvrszes; nevly allocated memory will be uninitializedf ptr
is NULL , the call is equialent tomalloc(size) if size is equal to zero, the call is egplént tofree(ptr).
Unlessptris NULL , it must hare been returned by an earlier callrt@lloc(), calloc() or realloc().

RETURN VALUE

For calloc() andmalloc(), the value returned is a pointer to the allocated memdnigh is suitably aligned
for ary kind of variable, oNULL if the request fails.

free() returns no value.

realloc() returns a pointer to the newly allocated memuatyich is suitably aligned for grkind of variable
and may be different fromtr, or NULL if the request fails. Isizewas equal to 0, either NULL or a
pointer suitable to be passedites() is returned.If realloc() fails the original block is left untouched - it is
not freed or meed.

CONFORMING TO

ANSI-C

SEE ALSO

brk (2), posix_memaligr(3)

SP-Klausur Manual-Auszug 2013-02-15 1

pthread_create/pthreacit3) pthread_create/pthreadit¢3)

NAME
pthread_create — create awntread / pthread_exit — terminate the calling thread

SYNOPSIS
#include <pthread.h>

int pthr ead_create(pthead_t * thread, pthread_attr_t * attr, void * (* start_routing(void *), void *
arg);

void pthread_exit(void *retval);

DESCRIPTION
pthread_createcreates a e thread of control thatecutes concurrently with the calling thread. Thevne
thread applies the functicstart_routinepassing itarg as first agument. The ne thread terminates either
explicitly, by calling pthread_exit(3), or implicitly, by returning from thestart_routinefunction. The latter
case is equelent to callingpthread_exit(3) with the result returned tstart_routineas exit code.

Theattr agument specifies thread attites to be applied to thew¢hread. Seethread_attr_init (3) for a
complete list of thread attributes. Tatr agument can also RULL , in which case default attributes are
used: the created thread is joinable (not detached) and has default (non real-time) schedyling polic

pthread_exit terminates thexecution of the calling threadAll cleanup handlers that te been set for the
calling thread withpthread_cleanup_puslif3) are &ecuted in reerse order (the most recently pushed han-
dler is executed first). Finalization functions for thread-specific data are then called fayalthat hae
non- NULL values associated with them in the calling thread (sibeead_key_creatg3)). Finally
execution of the calling thread is stopped.

The retval amgument is the return value of the thread. It can be consulted from another thread using
pthread_join(3).

RETURN VALUE
On success, the identifier of thewte created thread is stored in the location pointed bythteaad argu-
ment, and a 0 is returned. On er@ron-zero error code is returned.

The pthread_exit function neer returns.

ERRORS
EAGAIN
not enough system resources to create a process fomitibread.

EAGAIN
more tharPTHREAD_THREADS_MAX threads are already acti

AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_join(3), pthread_detach(3), pthread_attr_init (3).

SP-Klausur Manual-Auszug 2013-02-15 1

pthread_detach(3) pthread_detach(3)

NAME
pthread_detach — put a running thread in the detached state
SYNOPSIS
#include <pthread.h>
int pthread_detach(pthread_t th);
DESCRIPTION
pthread_detach put the threadh in the detached state. This guarantees that the memory resources con-
sumed byth will be freed immediately wheth terminates. Havever, this prevents other threads from syn-
chronizing on the termination ¢ usingpthread_join.
A thread can be created initially in the detached state, usimtgthehstateattribute topthread_creatg3).
In contrastpthread_detachapplies to threads created in the joinable state, and which need to be put in the
detached state later.
After pthread_detachcompletes, subsequent attempts to perfptimead_join on th will fail. If another
thread is already joining the thretidat the timepthread_detachis called,pthread_detachdoes nothing
and leaesth in the joinable state.
RETURN VALUE
On success, 0 is returned. On ereomn-zero error code is returned.
ERRORS
ESRCH
No thread could be found corresponding to that specifigd by
EINVAL
the threadh is already in the detached state
AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>
SEE ALSO
pthread_creatg3), pthread_join(3), pthread_attr_setdetachstaté3).
SP/SOS1-Klausur Manual-Auszug 2013-02-15 1

stat(2) stat(2)

NAME
stat, fstat, Istat — get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char *path, struct stat * buf);
int fstat(int fd, struct stat * buf);
int Istat(const char *path, struct stat * buf);

Feature Test Macro Requirements for glibc (se¢ure_test_macro$7)):

Istat(): _BSD_SOURCE || _XOPEN_SOURCE >= 500
DESCRIPTION

These functions return information about a file. No permissions are required on the file itself, but — in the

case ofstat() andlstat() — execute (search) permission is required on all of the directoripaththat lead
to the file.

stat() stats the file pointed to Ipathand fills inbuf .

Istat() is identical tostat(), except that ipathis a symbolic link, then the link itself is stat-ed, not the file

that it refers to.

fstat() is identical tostat(), except that the file to be stat-ed is specified by the file desduptor
All of these system calls returrstatstructure, which contains the following fields:

struct stat {
dev_t st dev; /%D of device containing file */
ino_t st_ino; /*inode number */
mode_t st_mode; /protection */
nlink_t st_nlink; /*number of hard links */
uid_t [*user ID of owner */
gid_t I*group ID of owner */
dev_t st rde; /* device ID (if special file) */
off t st_size; /*total size, in bytes */
blksize_t st_blksize; /* blocksize for file system 1/0 */
blkent_t st_blocks; /Mmumber of blocks allocated */
time_t st_atime;/* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

I8

Thest_defield describes the device on which thi

ile resides.

Thest_rdevfield describes the device that this file (inode) represents.

The st_sizefield gives the size of the file (if it is a regular file or a symbolic link) in bytes. The size of a

symlink is the length of the pathname it contains, without a trailing null byte.

The st_blocksfield indicates the number of blocks allocated to the file, 512-byte units. (This may be

smaller tharst_sizé512 when the file has holes.)

Thest_blksizdield gives the "preferred" blocksize for efficient file system I/QVriting to a file in smaller

chunks may cause an inefficient read-modify-rewrite.)

SP-Klausur Manual-Auszug 2013-02-15 1

stat(2)

stat(2)

Not all of the Linux file systems implement all of the time fiel8sme file system types allanounting in
such a way that file accesses do not cause an updatestfdlimefield. (Seé'noatime” inmount(8).)

The fieldst_atimeis changed by file accesses, for exampleexscvé2), mknod(2), pipe(2), utime(2) and
read(2) (of more than zero bytes). Other routines, tik@ap(2), may or may not updagt_atime

The fieldst_mtimes changed by file modifications, for example,roynod(2), truncate(2), utime(2) and
write (2) (of more than zero bytesMoreover, st_mtimeof a directory is changed by the creation or dele-
tion of files in that directory The st_mtimefield is not changed for changes irwaer, group, hard link
count, or mode.

The fieldst_ctimeis changed by writing or by setting inode information (i.evner, group
mode, etc.).

The following POSIX macros are defined to check the file type usirg_theoddield:

S_ISREG(m) isit a regular file?

S_ISDIR(m) directory?

S_ISCHR(m) charactedevice?

S_ISBLK(m) blockdevice?

S_ISFIFO(m) FIFO(named pipe)?

S_ISLNK(m) symboliclink? (Not in POSIX.1-1996.)

S ISSOCKm) soclet? (Not in POSIX.1-1996.)

RETURN VALUE

On success, zero is returned. On errdris returned, an@rrnois set appropriately.

ERRORS
EACCES
Search permission is denied for one of the directories in the path prefiattof (See also
path_resolution(7).)
EBADF
fdis bad.
EFAULT
Bad address.
ELOOP
Too mary symbolic links encountered while trarsing the path.
ENAMETOOLONG
File name too long.
ENOENT
A component of the pathathdoes not exist, or the path is an empty string.
ENOMEM
Out of memory (i.e., kernel memory).
ENOTDIR
A component of the path is not a directory.
SEE ALSO

acces§), chmod(2), chown(2), fstatat(2), readlink (2), utime(2), capabilities(7), symlink(7)

SP-Klausur Manual-Auszug 2013-02-15 2

