
accept(2)
accept(2)

N
A

M
E

accept −
 accept a connection on a socket

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/socket.h>

int accept(ints,struct sockaddr *a
d

d
r,int *

a
d

d
rle

n);

D
E

S
C

R
IP

T
IO

N
T

he argum
ents

is a socket that has been created w
ith

socket(3N
) and bound to an address w

ith
bind

(3N
),

and that is listening for connections after a call to
listen(3N

).
T

heaccept()function extracts the first con-
nection on the queue of pending connections, creates a ne

w
socket w

ith the properties ofs,
and allocates a

new
file descriptor,n

s,for the socket. Ifno pending connections are present on the queue and the socket is
not m

arked as non-blocking,accept()blocks the caller until a connection is present.
If the socket is

m
arked as non-blocking and no pending connections are present on the queue,

accept()returns an error as
described below.

The
accept()function uses thenetconfig(4) file to determ

ine theS
T

R
E

A
M

S
device file

nam
e associated w

iths.
T

his is the device on w
hich the connect indication w

ill be accepted.
T

he accepted
socket,n

s,is
used to read and w

rite data to and from
 the socket that connected to

n
s;itis

not used to accept
m

ore connections.
T

he original socket (
s)

rem
ains open for accepting further connections.

T
he argum

enta
d

d
r

is a result param
eter that is filled in w

ith the address of the connecting entity as it is
know

n to the com
m

unications layer
.

T
he exact form

at of thead
d

rparam
eter is determ

ined by the dom
ain

in w
hich the com

m
unication occurs.

T
he argum

enta
d

d
rle

n
is a value-result param

eter
.

Initially,
it

contains the am
ount of space pointed to by

a
d

d
r;on

return it contains the length in bytes of the address returned.

T
he

accept()function is used w
ith connection-based socket types, currently w

ith
S

O
C

K
_S

T
R

E
A

M
.

It is possible toselect(3C
) orpoll(2) a socket for the purpose of anaccept()by selecting or polling it for a

read.
H

ow
ever, this w

ill only indicate w
hen a connect indication is pending; it is still necessary to call

accept().

R
E

T
U

R
N

 VA
LU

E
S

T
he

accept()function returns−
1

on error.
Ifitsucceeds, it returns a non-ne

gative integer that is a descrip-
tor for the accepted socket.

E
R

R
O

R
Saccept()w

ill fail if:

E
B

A
D

F
T

he descriptor is invalid.

E
IN

T
R

T
he accept attem

pt w
as interrupted by the deli

very of a signal.

E
M

F
ILE

T
he per-process descriptor table is full.

E
N

O
D

E
V

T
he protocol fam

ily and type corresponding toscould not be found in thenetcon-
fig

file.

E
N

O
M

E
M

T
here w

as insufficient user m
em

ory a
vailable to com

plete the operation.

E
P

R
O

T O
A

protocol error has occurred; for exam
ple, the

S
T

R
E

A
M

S
protocol stack has not

been initialized or the connection has already been released.

E
W

O
U

LD
B

LO
C

K
T

he socket is m
arked as non-blocking and no connections are present to be

accepted.

S
E

E
 A

LS
Opoll(2),bind

(3N
),connect(3N

),listen(3N
),select(3C

),socket(3N
),netconfig(4),attributes(5),socket(5)

S
P

-K
lausur M

anual-A
uszug

2012-07-24
1

bind(2)
bind(2)

N
A

M
E

bind −
 bind a nam

e to a socket

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/socket.h>

int bind(int
s,const struct sockaddr *n

a
m

e,int
n

a
m

e
le

n);

D
E

S
C

R
IP

T
IO

N
bind()

assigns a nam
e to an unnam

ed sock
et. W

hena
socket is created w

ithsocket(3N
), it exists in a nam

e
space (address fam

ily) but has no nam
e assigned.

bind()
requests that the nam

e pointed to by
n

a
m

e
be

assigned to the socket.

R
E

T
U

R
N

 VA
LU

E
S

If the bind is successful,0is returned.A
return value of−

1
indicates an error,w

hich is further specified in
the globalerrno

.

E
R

R
O

R
ST

he
bind()

call w
ill fail if:

E
A

C
C

E
S

T
he requested address is protected and the current user has inadequate perm

ission
to access it.

E
A

D
D

R
IN

U
S

E
T

he specified address is already in use.

E
A

D
D

R
N

O
TA

VA
IL

T
he specified address is not a

vailable on the local m
achine.

E
B

A
D

F
s

is not a valid descriptor.

E
IN

VA
L

n
a

m
e

le
nis not the size of a valid address for the specified address fam

ily.

E
IN

VA
L

T
he socket is already bound to an address.

E
N

O
S

R
T

here w
ere insufficientST

R
E

A
M

S
resources for the operation to com

plete.

E
N

O
T

S
O

C
K

s
is a descriptor for a file, not a socket.

T
he follow

ing errors are specific to binding nam
es in the

U
N

IX
dom

ain:

E
A

C
C

E
S

S
earch perm

ission is denied for a com
ponent of the path prefix of the pathnam

e in
n

a
m

e.

E
IO

A
n I/O

 error occurred w
hile m

aking the directory entry or allocating the inode.

E
IS

D
IR

A
null pathnam

e w
as specified.

E
LO

O
P

Too
m

any
sym

bolic links w
ere encountered in translating the pathnam

e in
n

a
m

e.

E
N

O
E

N
T

A
com

ponent of the path prefix of the pathnam
e in
n

a
m

edoes not exist.

E
N

O
T

D
IR

A
com

ponent of the path prefix of the pathnam
e in
n

a
m

eis not a directory.

E
R

O
F

S
T

he inode w
ould reside on a read-only file system

.

S
E

E
 A

LS
Ounlink

(2),socket(3N
),attributes(5),socket(5)

N
O

T
E

S
B

inding a nam
e in theU

N
IX

dom
ain creates a socket in the file system

 that m
ust be deleted by the caller

w
hen it is no longer needed (using

unlink
(2)).

T
he rules used in nam

e binding vary betw
een com

m
unication dom

ains.

S
P

-K
lausur M

anual-A
uszug

2012-07-24
1

fopen/fdopen/fileno(3)
fopen/fdopen/fileno(3)

N
A

M
E

fopen, fdopen, fileno −
 stream

 open functions

S
Y

N
O

P
S

IS#include <
stdio.h>

F
ILE

 *fopen(const char *
p

a
th,const char *m

o
d

e);
F

ILE
 *fdopen(int

fild
e

s,const char *m
o

d
e);

int fileno(F
ILE

 *
stre

a
m);

D
E

S
C

R
IP

T
IO

N
T

he
fopen

function opens the file w
hose nam

e is the string pointed to by
p

a
th

and associates a stream
 w

ith
it.T

he argum
entm

o
d

epoints to a string beginning w
ith one of the follow

ing sequences (A
dditional characters

m
ay follow

these sequences.):

r
O

pen text file for reading.
T

he stream
 is positioned at the beginning of the file.

r+
O

pen for reading and w
riting.

T
he stream

 is positioned at the beginning of the file.

w
T

runcate file to zero length or create text file for w
riting.

T
he stream

 is positioned at the be
ginning

of the file.

w
+

O
pen for reading and w

riting.
T

he file is created if it does not e
xist, otherw

ise it is truncated.The
stream

 is positioned at the beginning of the file.

a
O

pen for appending (w
riting at end of file).The file is created if it does not e

xist.
T

he
stream

 is
positioned at the end of the file.

a+
O

pen for reading and appending (w
riting at end of file).

T
he file is created if it does not e

xist.
T

he stream
 is positioned at the end of the file.

T
he

fdopen
function associates a stream

 w
ith the existing file descriptor

,
fild

e
s.

T
he

m
o

d
e

of the stream
(one of the values "r", "r+

", "w
", "w

+
", "a", "a+

") m
ust be com

patible w
ith the m

ode of the file descriptor
.

T
he file position indicator of the ne

w
stream

 is set to that belonging tofild
e

s,
and the error and end-of-file

indicators are cleared.M
odes "w

" or "w
+

" do not cause truncation of the file.
T

he file descriptor is not
dup’ed, and w

ill be closed w
hen the stream

 created by
fdopen

is closed.
T

he result of applyingfdopen
to a

shared m
em

ory object is undefined.

T
he functionfileno() exam

ines the argum
ent
stre

a
m

and returns its integer descriptor.

R
E

T
U

R
N

 VA
LU

E
U

pon successful com
pletionfopen,

fdopen
and

freopen
return a

F
ILE

pointer.
O

therw
ise,N

U
LL

is
returned and the global variableerrn

o
is set to indicate the error.

E
R

R
O

R
SE

IN
VA

L
T

he
m

o
d

eprovided tofopen,fdopen,or
freopen

w
as

inv alid.

T
he

fopen,fdopen
and

freopen
functions m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the

routine
m

alloc(3).

T
he

fopen
function m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the routine

open(2).

T
he

fdopen
function m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the routine

fcntl(2).

S
E

E
 A

LS
Oopen(2),fclose(3),fileno(3)

S
P

-K
lausur M

anual-A
uszug

2012-07-24
1

fork(2)
fork(2)

N
A

M
E

fork −
 create a child process

S
Y

N
O

P
S

IS#include <
unistd.h>

pid_t fork(void);

D
E

S
C

R
IP

T
IO

N
fork

() creates a new
process by duplicating the calling process.

T
he ne
w

process, referred to as the
child

,is
an exact duplicate of the calling process, referred to as the

p
a

re
n

t,except for the follow
ing points:

*
T

he child has its ow
n unique process ID

, and this P
ID

 does not m
atch the ID

 of an
y

existing process
group (setpgid(2)).

*
T

he child’s
parent process ID

 is the sam
e as the parent’

s
process ID

.

*
T

he child does not inherit its parent’
s

m
em

ory locks (m
lock(2),m

lockall(2)).

*
P

rocess resource utilizations (
getrusage(2)) and C

P
U

 tim
e counters (

tim
es(2)) are reset to zero in the

child.

*
T

he child’s
set of pending signals is initially em

pty (
sigpending(2)).

*
T

he child does not inherit sem
aphore adjustm

ents from
 its parent (

sem
op(2)).

*
T

he child does not inherit record locks from
 its parent (

fcntl(2)).

*
T

he child does not inherit tim
ers from

 its parent (
setitim

er(2),alarm
(2),tim

er_create(2)).

*
T

he child does not inherit outstanding asynchronous I/O
 operations from

 its parent (
aio_read(3),

aio_w
rite(3)), nor does it inherit anyasynchronous I/O

 contexts from
 its parent (see

io_setup(2)).

T
he process attributes in the preceding list are all specified in P

O
S

IX
.1-2001.

T
he parent and child also

differ w
ith respect to the follow

ing Linux-specific process attributes:

*
T

he child does not inherit directory change notifications (dnotify) from
 its parent (see the description of

F
_N

O
T

IF
Y

in
fcntl(2)).

*
T

he
prctl(2)P

R
_S

E
T

_P
D

E
AT

H
S

IG
setting is reset so that the child does not recei

ve a signal w
hen its

parent term
inates.

*
M

em
ory m

appings that have been m
arked w

ith them
advise(2)

M
A

D
V

_D
O

N
T

F
O

R
K

flag are not
inherited across afork

().

*
T

he term
ination signal of the child is al

w
ays

S
IG

C
H

LD
(seeclone(2)).

N
ote the follow

ing further points:

*
T

he child process is created w
ith a single thread —

 the one that called
fork

(). T
he

entire virtual address
space of the parent is replicated in the child, including the states of m

ute
xes, condition variables, and

other pthreads objects; the use of
pthread_atfork

(3) m
ay be helpful for dealing w

ith problem
s that this

can cause.

*
T

he child inherits copies of the parent’
s

set of open file descriptors.
E

ach file descriptor in the child
refers to the sam

e open file description (see
open(2)) as the corresponding file descriptor in the parent.

T
his m

eans that the twodescriptors share open file status flags, current file offset, and signal-dri
ven

I/O
attributes (see the description of

F
_S

E
TO

W
N

and
F

_S
E

T
S

IG
in

fcntl(2)).

*
T

he child inherits copies of the parent’
s

set of open m
essage queue descriptors (see

m
q_overview

(7)).
E

ach descriptor in the child refers to the sam
e open m

essage queue description as the corresponding
descriptor in the parent.

T
his m

eans that the tw
o

descriptors share the sam
e flags (

m
q

_
flag

s).

*
T

he child inherits copies of the parent’
s

set of open directory stream
s (see

opendir(3)). P
O

S
IX

.1-2001
says that the corresponding directory stream

s in the parent and child
m

a
y

share the directory stream
positioning; on Linux/glibc they

do
not.

S
P

-K
lausur M

anual-A
uszug

2012-07-24
1

fork(2)
fork(2)

R
E

T
U

R
N

 VA
LU

E
O

n success, the P
ID

 of the child process is returned in the parent, and 0 is returned in the child.
O

n f
ailure,

−
1 is returned in the parent, no child process is created, and

e
rrn

o
is set appropriately.

E
R

R
O

R
SE

A
G

A
IN

fork
() cannot allocate sufficient m

em
ory to cop

y
the parent’spage tables and allocate a task struc-

ture for the child.

E
A

G
A

IN
It w

as not possible to create a ne
w

process because the caller’
s

R
LIM

IT
_N

P
R

O
C

resource lim
it

w
as

encountered.
To

exceed this lim
it, the process m

ust ha
ve either the

C
A

P
_S

Y
S

_A
D

M
IN

or
the

C
A

P
_S

Y
S

_R
E

S
O

U
R

C
Ecapability.

E
N

O
M

E
Mfork

() failed to allocate the necessary kernel structures because m
em

ory is tight.

C
O

N
F

O
R

M
IN

G
 T

O
S

V
r4, 4.3B

S
D

, P
O

S
IX

.1-2001.

N
O

T
E

S
U

nder Linux,fork
() is im

plem
ented using copy-on-w

rite pages, so the only penalty that it incurs is the tim
e

and m
em

ory required to duplicate the parent’
s

page tables, and to create a unique task structure for the
child.

S
ince version 2.3.3, rather than in

voking the kernel’s
fork

() system
 call, the glibcfork

() w
rapper that is

provided as part of the N
P

T
L threading im

plem
entation in

vokes
clone(2) w

ith flags that provide the sam
e

effect as the traditional system
 call.

T
he glibc w

rapper in
vokes

any fork handlers that have been established
using

pthread_atfork
(3).

E
X

A
M

P
LES

eepipe(2) andw
ait(2).

S
E

E
 A

LS
Oclone(2),

execve(2),
setrlim

it(2),
unshare(2),

vfork
(2),

w
ait(2),

daem
on(3),

capabilities(7),
creden-

tials(7)

C
O

LO
P

H
O

N
T

his page is part of release 3.27 of the Linux
m

a
n

-p
ages

project. A
description of the project, and inform

a-
tion about reporting bugs, can be found at http://w

w
w

.kernel.org/doc/m
an-pages/.

S
P

-K
lausur M

anual-A
uszug

2012-07-24
2

gets(3)
gets(3)

N
A

M
E

gets, fgets −
 get a string from

 a stream
fputs, puts −

 output of strings

S
Y

N
O

P
S

IS#include <
stdio.h>

char *gets(char *s);

char *fgets(char *s,int
n,F

ILE
*stre

a
m);

int fputs(const char *s,F
ILE

 *
stre

a
m);

int puts(const char *s);

D
E

S
C

R
IP

T
IO

N
 gets/fgets

T
he

gets()function reads characters from
 the standard input stream

 (see
intro

(3)),stdin,
into the array

pointed to bys,
until a new

line character is read or an end-of-file condition is encountered.
T

he ne
w

line
character is discarded and the string is term

inated w
ith a null character.

T
he

fgets()function reads characters from
 the

stre
a

m
into the array pointed to bys,

until
n−

1 characters
are read, or a new

line character is read and transferred to
s,or

an
end-of-file condition is encountered.The

string is then term
inated w

ith a null character.

W
hen usinggets(),

if
the length of an input line exceeds the size of

s,
indeterm

inate behavior m
ay result.

F
or

this reason, it is strongly recom
m

ended that
gets()be avoided in favor

of
fgets().

R
E

T
U

R
N

 VA
LU

E
S

If end-of-file is encountered and no characters ha
ve been read, no characters are transferred to

s
and a null

pointer is returned.
If a read error occurs, such as trying to use these functions on a file that has not been

opened for reading, a null pointer is returned and the error indicator for the stream
 is set.

If end-of-file is
encountered, theEO

F
indicator for the stream

 is set.
O

therw
ise
s

is returned.

E
R

R
O

R
ST

he
gets()and

fgets()functions w
ill fail if data needs to be read and:

E
O

V
E

R
F

LO
W

T
he file is a regular file and an attem

pt w
as m

ade to read at or be
yond the offset m

axi-
m

um
 associated w

ith the corresponding
stre

a
m.

D
E

S
C

R
IP

T
IO

N
 puts/fputs

fputs()
w

rites the strings
to

stre
a

m,w
ithout its trailing’\0’.

puts()w
rites the strings

and a trailing new
line tostd

o
u

t.

C
alls to the functions described here can be m

ix
ed w

ith each other and w
ith calls to other output functions

from
 thestdio

library for the sam
e output stream

.

R
E

T
U

R
N

 VA
LU

E
puts()and

fputs()
return a non - negative num

ber on success, or
E

O
F

on error.

S
P

-K
lausur M

anual-A
uszug

2012-07-24
1

socket(2) / ipv6(7)
socket(2) / ipv6(7)

N
A

M
E

ipv6, P
F

_IN
E

T
6 −

 Linux IP
v6 protocol im

plem
entation

S
Y

N
O

P
S

IS#include <
sys/socket.h>

#include <
netinet/in.h>

tcp
6

_
so

cket
=

socket(P
F

_IN
E

T
6, S

O
C

K
_S

T
R

E
A

M
, 0);

ra
w

6
_

so
cket

=
socket(P

F
_IN

E
T

6, S
O

C
K

_R
AW

,
p

ro
to

co
l);

u
d

p
6

_
so

cket
=

socket(P
F

_IN
E

T
6, S

O
C

K
_D

G
R

A
M

,
p

ro
to

co
l);

D
E

S
C

R
IP

T
IO

N
Linux 2.2 optionally im

plem
ents the Internet P

rotocol, v
ersion 6.

T
his m

an page contains a description of
the IP

v6 basic A
P

I as im
plem

ented by the Linux kernel and glibc 2.1.
T

he interface is based on the B
S

D
sockets interface; seesocket(7).

T
he IP

v6 A
P

I aim
s to be m

ostly com
patible w

ith the
ip

(7) v4 A
P

I.
O

nly differences are described in this
m

an page.

To bind anA
F

_IN
E

T
6

socket to any
process the local address should be copied from

 the
in

6
a

d
d

r_
a

n
yvari-

able w
hich hasin

6
_

a
d

d
rtype.

In
static initializationsIN

6A
D

D
R

_A
N

Y
_IN

IT
m

ay also be used, w
hich

expands to a constant e
xpression. B

othof them
 are in netw

ork order.

T
he IP

v6 loopback address (::1) is a
vailable in the globalin

6
a

d
d

r_
lo

o
p

b
a

ckvariable.
For initializations

IN
6A

D
D

R
_LO

O
P

B
A

C
K

_IN
IT

should be used.

IP
v4 connections can be handled w

ith the v6 A
P

I by using the v4-m
apped-on-v6 address type; thus a pro-

gram
 only needs only to support this A

P
I type to support both protocols.

T
his is handled transparently by

the address handling functions in libc.

IP
v4 and IP

v6 share the local port space.
W

hen you get an IP
v4 connection or packet to a IP

v6 socket its
source address w

ill be m
apped to v6 and it w

ill be m
apped to v6.

A
ddress F

orm
at

struct sockaddr_in6 {
uint16_t

sin6_fam
ily;

/*
A

F
_IN

E
T

6 */
uint16_t

sin6_port;
/* port num

ber */
uint32_t

sin6_flow
info; /* IP

v6 flow
inform

ation */
struct in6_addr sin6_addr;

/* IP
v6 address */

uint32_t
sin6_scope_id;/* S

cope ID
 (new

in
2.4) */

};struct in6_addr {
unsigned chars6_addr[16];

/*IP
v6 address */

};

sin
6

_
fa

m
ilyis alw

ays set toA
F

_IN
E

T
6

;sin
6

_
p

o
rtis the protocol port (seesin

_
p

o
rtin

ip
(7));sin

6
_

flo
w

in
fo

is the IP
v6 flow

identifier;sin
6

_
a

d
d

ris the 128-bit IP
v6 address.sin

6
_

sco
p

e
_

idis an ID
 of depending of

on the scope of the address.
It is ne

w
in

L
inux 2.4.

Linux only supports it for link scope addresses, in that
casesin

6
_

sco
p

e
_

idcontains the interface inde
x

(seenetdevice(7))

N
O

T
E

S
T

he
so

cka
d

d
r_

in
6structure is bigger than the generic

so
cka

d
d

r.
Program

s that assum
e that all address

types can be stored safely in a
stru

ct so
cka

d
d

rneed to be changed to use
stru

ct so
cka

d
d

r_
sto

rage
for that

instead.

S
E

E
 A

LS
Ocm

sg(3),ip
(7)

S
P

-K
lausur M

anual-A
uszug

2012-02-22
1

listen(2)
listen(2)

N
A

M
E

listen −
 listen for connections on a socket

S
Y

N
O

P
S

IS#include <
sys/types.h>

/* S
ee N

O
T

E
S

 */
#include <

sys/socket.h>

int listen(int
so

ckfd,int
b

a
cklog);

D
E

S
C

R
IP

T
IO

N
listen() m

arks the socket referred to by
so

ckfdas a passive socket, that is, as a socket that w
ill be used to

accept incom
ing connection requests using

accept(2).

T
he

so
ckfdargum

ent is a file descriptor that refers to a socket of type
S

O
C

K
_S

T
R

E
A

M
orS

O
C

K
_S

E
Q

-
P

A
 C

K
E

T
.

T
he

b
a

cklog
argum

ent defines the m
axim

um
 length to w

hich the queue of pending connections for
so

ckfd
m

ay grow
.

If
a

connection request arri
ves

w
hen the queue is full, the client m

ay recei
ve an

error w
ith an

indication ofE
C

O
N

N
R

E
F

U
S

E
D

or,ifthe underlying protocol supports retransm
ission, the request m

ay be
ignored so that a later reattem

pt at connection succeeds.

R
E

T
U

R
N

 VA
LU

E
O

n success, zero is returned.
O

n error
,−

1
is

returned, ande
rrn

o
is set appropriately.

E
R

R
O

R
SE

A
D

D
R

IN
U

S
E

A
nother socket is already listening on the sam

e port.

E
B

A
D

F
T

he argum
entso

ckfdis not a valid descriptor.

E
N

O
T

S
O

C
K

T
he argum

entso
ckfdis not a socket.

N
O

T
E

S
To accept connections, the follow

ing steps are perform
ed:

1.
A

socket is created w
ithsocket(2).

2.
T

he
socket is bound to a local address using

bind
(2), so that other sockets m

ay be
connect(2)ed

to it.

3.
A

w
illingness to accept incom

ing connections and a queue lim
it for incom

ing connections are
specified w

ithlisten().

4.
C

onnectionsare accepted w
ithaccept(2).

If the
b

a
cklog

argum
ent is greater than the value in

/p
ro

c/sys/n
e

t/co
re

/so
m

a
xco

n
n

,
then it is silently trun-

cated to that value; the default value in this file is 128.

E
X

A
M

P
LES

eebind
(2).

S
E

E
 A

LS
Oaccept(2),bind

(2),connect(2),socket(2),socket(7)

S
P

-K
lausur M

anual-A
uszug

2012-07-24
1

m
alloc(3)

m
alloc(3)

N
A

M
E

calloc, m
alloc, free, realloc −

 A
llocate and free dynam

ic m
em

ory

S
Y

N
O

P
S

IS#include <
stdlib.h>

void *calloc(size_tn
m

e
m

b,size_tsize);
void *m

alloc(size_tsize);
void free(void

*p
tr);

void *realloc(void
*p

tr,size_tsize);

D
E

S
C

R
IP

T
IO

N
calloc()allocates m

em
ory for an array of

n
m

e
m

belem
ents ofsize

bytes each and returns a pointer to the
allocated m

em
ory.T

he m
em

ory is set to zero.

m
alloc()allocatessizebytes and returns a pointer to the allocated m

em
ory

.
T

he m
em

ory is not cleared.

free()
frees the m

em
ory space pointed to by

p
tr,

w
hich m

ust have been returned by a previous call to
m

al-
loc(),calloc()or

realloc().
O

therw
ise, or iffree(p

tr)
has already been called before, undefined beha

viour
occurs. Ifp

tr
is

N
U

LL
,no

operation is perform
ed.

realloc()
changes the size of the m

em
ory block pointed to by

p
tr

to
size

bytes.
T

hecontents w
ill be

unchanged to the m
inim

um
 of the old and ne

w
sizes; new

ly allocated m
em

ory w
ill be uninitialized.

If
p

tr
is

N
U

LL
,

the call is equivalent to
m

alloc(size);
if

size is equal to zero, the call is equi
valent to

free(p
tr).

U
nlessp

tr
is

N
U

LL
,itm

ust have been returned by an earlier call to
m

alloc(),calloc()orrealloc().

R
E

T
U

R
N

 VA
LU

E
F

or
calloc()and

m
alloc(),the value returned is a pointer to the allocated m

em
ory

,w
hich is suitably aligned

for any
kind of variable, orN

U
LL

if the request fails.

free()returns no value.

realloc()returns a pointer to the new
ly allocated m

em
ory

,w
hich is suitably aligned for anykind of variable

and m
ay be different fromp

tr,
or

N
U

LL
if the request fails. Ifsize

w
as

equal to 0, either N
U

LL or a
pointer suitable to be passed to

fre
e() is returned.If

realloc()fails the original block is left untouched - it is
not freed or m

oved.

C
O

N
F

O
R

M
IN

G
 T

O
A

N
S

I-C

S
E

E
 A

LS
Obrk

(2),posix_m
em

align(3)

S
P

-K
lausur M

anual-A
uszug

2012-07-24
1

pthread_create/pthread_e
xit(3)

pthread_create/pthread_e
xit(3)

N
A

M
E

pthread_create −
 create a ne

w
thread / pthread_exit −

 term
inate the calling thread

S
Y

N
O

P
S

IS#include <
pthread.h>

int pthread_create(pthread_t *
th

re
a

d,
pthread_attr_t *

a
ttr,

void * (*
sta

rt_
ro

u
tin

e)(void *), void *
a

rg);

void pthread_exit(void *retva
l);

D
E

S
C

R
IP

T
IO

N
pthread_create

creates a new
thread of control that executes concurrently w

ith the calling thread. T
he ne

w
thread applies the functionsta

rt_
ro

u
tin

epassing ita
rg

as first argum
ent. T

he ne
w

thread term
inates either

explicitly,by
calling

pthread_exit(3), or im
plicitly,by

returning from
 thesta

rt_
ro

u
tin

efunction. T
he latter

case is equivalent to callingpthread_exit(3) w
ith the result returned bysta

rt_
ro

u
tin

eas exit code.

T
he

a
ttr

argum
ent specifies thread attributes to be applied to the ne

w
thread. S

eepthread_attr_init(3) for a
com

plete list of thread attributes. T
he
a

ttr
argum

ent can also beNU
LL

,in
w

hich case default attributes are
used: the created thread is joinable (not detached) and has default (non real-tim

e) scheduling polic
y.

pthread_exitterm
inates the execution of the calling thread.All cleanup handlers that ha

ve been set for the
calling thread w

ithpthread_cleanup_push(3) are executed in reverse order (the m
ost recently pushed han-

dler is executed first). F
inalization functions for thread-specific data are then called for all k

eys
that have

non-
N

U
LL

values associated w
ith them

 in the calling thread (see
pthread_key_create(3)).

F
inally,

execution of the calling thread is stopped.

T
he

retva
l

argum
ent is the return value of the thread. It can be consulted from

 another thread using
pthread_join

(3).

R
E

T
U

R
N

 VA
LU

E
O

n success, the identifier of the ne
w

ly created thread is stored in the location pointed by the
th

re
a

d
argu-

m
ent, and a 0 is returned. O

n error
,a

non-zero error code is returned.

T
he

pthread_exitfunction never
returns.

E
R

R
O

R
SE

A
G

A
IN

not enough system
 resources to create a process for the ne

w
thread.

E
A

G
A

IN
m

ore thanP
T

H
R

E
A

D
_T

H
R

E
A

D
S

_M
A

X
threads are already acti

ve.

A
U

T
H

O
RX

avier Leroy
<

X
avier.Leroy@

inria.fr>

S
E

E
 A

LS
Opthread_join

(3),pthread_detach(3),pthread_attr_init(3).

S
P

-K
lausur M

anual-A
uszug

2012-07-24
1

socket(2)
socket(2)

N
A

M
E

socket −
 create an endpoint for com

m
unication

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/socket.h>

int socket(intd
o

m
a

in,int
typ

e,int
p

ro
to

co
l);

D
E

S
C

R
IP

T
IO

N
socket()creates an endpoint for com

m
unication and returns a descriptor.

T
he

d
o

m
a

in
param

eter specifies a com
m

unications dom
ain w

ithin w
hich com

m
unication w

ill tak
e

place;
this selects the protocol fam

ily w
hich should be used.

T
he protocol fam

ily generally is the sam
e as the

address fam
ily for the addresses supplied in later operations on the sock

et.
T

hecurrently understood for-
m

ats are:P
F

_IN
E

T
A

R
P

A
Internet protocols

T
he socket has the indicatedtyp

e,
w

hich specifies the com
m

unication sem
antics.

C
urrently defined types

are:

S
O

C
K

_S
T

R
E

A
M

S
O

C
K

_D
G

R
A

M

A
S

O
C

K
_S

T
R

E
A

M
type provides sequenced, reliable, tw

o-w
ay connection-based byte stream

s.
A

n out-of-
band data transm

ission m
echanism

 m
ay be supported.

A
S

O
C

K
_D

G
R

A
M

socket supports datagram
s (con-

nectionless, unreliable m
essages of a fixed (typically sm

all) m
axim

um
 length).

p
ro

to
co

lspecifies a particular protocol to be used w
ith the sock

et. N
orm

allyonly a single protocol exists to
support a particular socket type w

ithin a gi
ven

protocol fam
ily.

H
ow

ev er, m
ultiple protocols m

ay exist, in
w

hich case a particular protocol m
ust be specified in this m

anner
.

T
he protocol num

ber to use is particular
to the “com

m
unication dom

ain” in w
hich com

m
unication is to tak

e
place.

Ifa
protocol is specified by the

caller,then it w
ill be packaged into a socket le

veloption request and sent to the underlying protocol layers.

S
ockets of typeS

O
C

K
_S

T
R

E
A

M
are full-duplex

byte stream
s, sim

ilar to pipes.Astream
 socket m

ust be in
a

co
n

n
e

cte
dstate before anydata m

ay be sent or recei
ved

on
it.

A
connection to another socket is created

w
ith a

connect(3N
) call.

O
nce connected, data m

ay be transferred using
read(2) and

w
rite

(2) calls or
som

e variant of thesend(3N
) andrecv(3N

) calls.
W

hen a session has been com
pleted, a

close(2) m
ay be

perform
ed.

O
ut-of-banddata m

ay also be transm
itted as described on the

send(3N
) m

anual page and
received

as
described on therecv(3N

) m
anual page.

T
he com

m
unications protocols used to im

plem
ent a

S
O

C
K

_S
T

R
E

A
M

insure that data is not lost or dupli-
cated.

Ifa
piece of data for w

hich the peer protocol has b
uffer space cannot be successfully transm

itted
w

ithin a reasonable length of tim
e, then the connection is considered brok

en and calls w
ill indicate an error

w
ith −

1 returns and w
ithE

T
IM

E
D

O
U

T
as the specific code in the global v

ariableerrno
.

A
S

IG
P

IP
E

signal
is raised if a process sends on a broken stream

; this causes nai
ve processes, w

hich do not handle the signal,
to exit.

R
E

T
U

R
N

 VA
LU

E
S

A
−

1
is returned if an error occurs.

O
therw

ise the return value is a descriptor referencing the socket.

E
R

R
O

R
ST

he
socket()call fails if:

E
A

C
C

E
S

P
erm

ission to create a socket of the specified type and/or protocol is denied.

E
N

O
M

E
M

Insufficient user m
em

ory is available.

S
E

E
 A

LS
Oclose(2),read(2),w

rite
(2),accept(3N

),bind
(3N

),connect(3N
),listen(3N

),

S
P

-K
lausur M

anual-A
uszug

2012-07-24
1

printf(3)
printf(3)

N
A

M
E

printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf −
 form

atted output con
version

S
Y

N
O

P
S

IS#include <
stdio.h>

int printf(const char *
fo

rm
a

t,...);
int fprintf(F

ILE
 *

stre
a

m,const char *fo
rm

a
t,...);

int sprintf(char *
str,const char *fo

rm
a

t,...);
int snprintf(char *

str,size_tsize,const char *fo
rm

a
t,...);

...

D
E

S
C

R
IP

T
IO

N
T

he functions in theprintf() fam
ily produce output according to aform

a
tas described below.

The func-
tions

printf() and
vprintf() w

rite output tostd
o

u
t,

the standard output stream
;

fprintf
() and

vfprintf
()

w
rite output to the given

outputstre
a

m;
sprintf(),snprintf(),vsprintf() and

vsnprintf() w
rite to the char-

acter stringstr.

T
he functionssnprintf() and

vsnprintf() w
rite at m

ostsize
bytes (including the trailing null byte ('\0')) to

str.

T
hese eight functions w

rite the output under the control of a
fo

rm
a

tstring that specifies how
subsequent

argum
ents (or argum

ents accessed via the variable-length argum
ent facilities of

stdarg(3)) are converted for
output.

R
eturn

value
U

pon successful return, these functions return the num
ber of characters printed (not including the trailing

'\0' used to end output to strings).

T
he functionssnprintf() and

vsnprintf() do not w
rite m

ore thansize
bytes (including the trailing '\0').If

the output w
as truncated due to this lim

it then the return v
alue is the num

ber of characters (not including
the trailing '\0') w

hich would have been w
ritten to the final string if enough space had been a

vailable. T
hus,

a
return value ofsizeor m

ore m
eans that the output w

as truncated.
(S

ee also belo
w

under N
O

T
E

S
.)

If an output error is encountered, a ne
gative value is returned.

F
orm

at of the form
at string

T
he form

at string is a character string, beginning and ending in its initial shift state, if an
y.

The form
at

string is com
posed of zero or m

ore directi
ves: ordinary characters (not

%
), w

hich are copied unchanged to
the output stream

; and con
version specifications, each of w

hich results in fetching zero or m
ore subsequent

argum
ents.

E
achconversion specification is introduced by the character

%
,

and ends w
ith aco

nve
rsio

n
sp

e
cifie

r.
In

betw
een there m

ay be (in this order) zero or m
ore

flag
s,

an
optional m

inim
um

fie
ld

 w
id

th,
an

optionalp
re

cisio
nand an optionalle

n
g

th
 m

o
d

ifie
r.

T
he conversion specifier

A
character that specifies the type of con

version to be applied.
A

n exam
ple for a con

version specifier is:

s
T

he
co

n
st ch

a
r *argum

ent is expected to be a pointer to an array of character type (pointer to a
string).

C
haractersfrom

 the array are w
ritten up to (b

ut not including) a term
inating null byte

('\0'); if a precision is specified, no m
ore than the num

ber specified are w
ritten.
If a precision is

given, no null byte need be present; if the precision is not specified, or is greater than the size of
the array,the array m

ust contain a term
inating null byte.

S
E

E
 A

LS
Oprintf(1),asprintf(3),dprintf(3),scanf(3),setlocale(3),w

crtom
b

(3),w
printf(3),locale(5)

S
P

-K
lausur M

anual-A
uszug

2012-07-24
1

