accept(2) accept(2)

NAME
accept — accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, int * addrler);

DESCRIPTION
The agumentsis a socket that has been created witbke(3N) and bound to an address witind (3N),
and that is listening for connections after a call#®n(3N). Theaccept()function extracts the first con-
nection on the queue of pending connections, createw aocket with the properties of and allocates a
new file descriptarns, for the sockt. If no pending connections are present on the queue and the socket is
not marked as non-blockingiccept() blocks the caller until a connection is present. If the socket is
marked as non-blocking and no pending connections are present on theapoepéd()returns an error as
described belw. The accept()function uses th@etconfig4) file to determine th6 TREAMS device file
name associated with This is the device on which the connect indication will be accepted. The accepted
socket,ns, is used to read and write data to and from the socket that connecigdk is not used to accept
more connections. The original sockstremains open for accepting further connections.

The agumentaddr is a result parameter that is filled in with the address of the connecting entity as it is
known to the communications layeThe exact format of thaddr parameter is determined by the domain
in which the communication occurs.

The agumentaddrlenis a \alue-result parametetnitially, it contains the amount of space pointed to by
addr; on return it contains the length in bytes of the address returned.

Theaccept()function is used with connection-based socket types, currentlyS®ithk_STREAM.

It is possible taselec{3C) orpoll(2) a sockt for the purpose of accept()by selecting or polling it for a

read. Hovever, this will only indicate when a connect indication is pending; it is still necessary to call
accept()

RETURN VALUES
Theaccept()function returns-1 on error If it succeeds, it returns a nongaive integer that is a descrip-
tor for the accepted socket.

ERRORS
accept()will fail i
EBADF The descriptor is ielid.
EINTR The accept attempt was interrupted by thevesliof a signal.
EMFILE The per-process descriptor table is fu
ENODEV The protocol &mily and type corresponding saould not be found in theetcon-
fig file.
ENOMEM There was insufficient user memomgitable to complete the operation.
EPROTO A protocol error has occurred; for example, 8®REAMS protocol stack has not
been zed or the connection has already been released.
EWOULDBLOCK The socket is marked as non-blocking and no connections are present to be
accepted.
SEE ALSO

poll(2), bind(3N), connec{3N), listen(3N), selec{3C), socke(3N), netconfig4), attributes(5), socke(5)

SP-Klausur Manual-Auszug 2012-07-24 1

bind(2) bind(2)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int bind(int s, const struct sockaddr *name int nameley;

DESCRIPTION
bind() assigns a name to an unnamed stckVhena socket is created witlsocke(3N), it exists in a name
space (address family) but has no name assighiedl() requests that the name pointed toriamebe
assigned to the socket.

RETURN VALUES
If the bind is successfullis returned.A return \alue of-1 indicates an errowhich is further specified in
the globalerrno.

ERRORS
Thebind() call will f

f:

EACCES The requested address is protected and the current user has inadequate permission
to access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVA IL The specified address is netitable on the local machine.

EBADF sis not a valid descriptor.

EINVAL nameleris not the size of a valid address for the specified address family.

EINVAL The socket is already bound to an address.

ENOSR There were insufficier8TREAMSresources for the operation to complete.

ENOTSOCK sis a descriptor for a file, not a socket.

The following errors are specific to binding names inuURe&X domain:

EACCES Search permission is denied for a component of the path prefix of the pathname in
name

EIO An 1/O error occurred while making the directory entry or allocating the inode.

EISDIR A null pathname was specified.

ELOOP Too mary symbolic links were encountered in translating the pathnamarime

ENOENT A component of the path prefix of the pathnameamedoes not exist.

ENOTDIR A component of the path prefix of the pathnameameis not a directory.

EROFS The inode would reside on a read-only file system.

SEE ALSO

unlink (2), socke(3N), attributes(5), socke(5)
NOTES

Binding a name in th&NIX domain creates a socket in the file system that must be deleted by the caller

when it is no longer needed (usinglink (2)).
The rules used in name binding vary between communication domains.

SP-Klausur Manual-Auszug 2012-07-24 1

fopen/fdopenf/fileno(3) fopen/fdopenf/fileno(3)

NAME
fopen, fdopen, fileno - stream open functions

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * path, const char *mode);
FILE *fdopen(int fildes const char *mode);
int fileno(FILE * strean);

DESCRIPTION
Thefopen function opens the file whose name is the string pointed mathyand associates a stream with
it.

The agumentmodepoints to a string lignning with one of the following sequences (Additional characters
may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.
r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned agiheitg
of the file.

g. The file is created if it does rist,eotherwise it is truncatedlhe
ned at the beginning of the file.

a Open for appending (writing at end of fileJhe file is created if it does natist. Thestream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it doegistot e
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descrifithes The modeof the stream
(one of the alues ", wl, tw, Mat, "a+") must be compatible with the mode of the file descri
The file position indicator of the mestream is set to that belongingfitsles and the error and end-of-file
indicators are clearedModes "w" or "w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream creatdddyyenis closed. The result of applyiridopento a
shared memory object is undefined.

The functiorfileno() examines the argumestreamand returns its integer descriptor.

RETURN VALUE
Upon successful completioiopen, fdopen and freopen return aFILE pointer Otherwise,NULL is
returned and the global variatg@ernois set to indicate the error.
ERRORS
EINVAL
Themodeprovided tofopen, fdopen, or freopenwas invdid.

Thefopen, fdopen andfreopen functions may also fail and setrno for ary of the errors specified for the
routinemalloc(3).

Thefopen function may also fail and setrno for ary of the errors spe

ed for the routiopen(2).
Thefdopen function may also fail and setrno for ary of the errors specified for the routifentl (2).

SEE ALSO
open(2), fclosg3), fileno(3)

SP-Klausur Manual-Auszug 2012-07-24 1

fork(2) fork(2)

NAME
fork — create a child process

SYNOPSIS
#include <unistd.h>

pid_t fork(void);

DESCRIPTION
fork () creates a meprocess by duplicating the calling process. The pecess, referred to as tbhild, is
an exact duplicate of the calling process, referred to gsatieat except for the following points:

* The child has its own unique process ID, and this PID does not match the IR efistimg process
group 6etpgid2)).

* The childs parent process ID is the same as the pargrdtess ID.

* The child does not inherit its parentremory locks ifilock(2), mlockall(2)).

* Process resource utilizationgetrusagé2)) and CPU time countersirfes(2)) are reset to zero in the
child.

* The childs t of pending signals is initially emptgigpending2)).

* The child does not inherit semaphore adjustments from its pagnof{2)).

* The child does not inherit record locks from its parésrit((2)).

* The child does not inherit timers from its paresgtitimer(2), alarm(2), timer_create(2)).

* The child does not inherit outstanding asynchronous 1/O operations from its paienedd3),
aio_write(3)), nor does it inherit 3nesynchronous 1/0O contexts from its parent (gesetup(2)).

The process attriltes in the preceding list are all specified in POSIX.1-2001. The parent and child also
differ with respect to the following Linux-specific process attributes:

* The child does not inherit directory change notifications (dnotify) from its parent (see the description of
F_NOTIFY in fentl (2)).

* Theprctl (2) PR_SET_PDEATHSIG setting is reset so that the child does not wecaiggnal when its
parent terminates.

* Memory mappings that hia been marked with thenadvisq2) MADV_DONTFORK flag are not
inherited across ®rk ().

* The termination signal of the child isnalys SIGCHLD (seeclong(2)).

Note the following further points:

* The child process is created with a single thread — the one thatfcakéd Theentire virtual address
space of the parent is replicated in the child, including the states afesyutendition variables, and
other pthreads objects; the useptifread_atfork (3) may be helpful for dealing with problems that this
can cause.

* The child inherits copies of the parent:t of open file descriptors. Each file descriptor in the child
refers to the same open file description (@een(2)) as the corresponding file descriptor in the parent.
This means that the twdescriptors share open file status flags, current file offset, and sigrexl-d©
attributes (see the descriptionfof SETOWN andF_SETSIG n fcntl (2)).

The child inherits copies of the parengt of open message queue descriptors rfggeoverview(7)).
Each descriptor in the child refers to the same open message queue description as the corresponding
descriptor in the parent. This means that the descriptors share the same flagey(flag$.

*

* The child inherits copies of the parengt of open directory streams (sggendir(3)). POSIX.1-2001
says that the corresponding directory streams in the parent andnzhyilshare the directory stream
positioning; on Linux/glibc thedo rot.

SP-Klausur Manual-Auszug 2012-07-24 1

fork(2) fork(2)

RETURN VALUE
On success, the PID of the child process is returned in the parent, and 0 is returned in the caildreOn f
-1 is returned in the parent, no child process is createdramalis set appropriately.
ERRORS
EAGAIN
fork () cannot allocate sufficient memory to gape parens page tables and allocate a task struc-
ture for the child.
EAGAIN
It was not possible to create amnprocess because the calleRLIMIT_NPROC resource limit
was encountered. @ exceed this limit, the process mustvhadther theCAP_SYS_ADMIN or
the CAP_SYS_RESOURCEcapability.
ENOMEM
fork () failed to allocate the necessary kernel structures because memory is tight.
CONFORMING TO
SVr4, 4.3BSD, POSIX.1-2001.

NOTES
Under Linux,fork () is implemented using copy-on-write pages, so the only penalty that it incurs is the time
and memory required to duplicate the paeptige tables, and to create a unique task structure for the
child.
Since version 2.3.3, rather tharvaking the lernel’sfork () system call, the glibéork () wrapper that is
provided as part of the NPTL threading implementatiarokes cloneg(2) with flags that provide the same
effect as the traditional system call. The glibc wrappeskes any fork handlers that lva bkeen established
usingpthread_atfork (3).

EXAMPLE
Seepipe(2) andwait(2).

SEE ALSO
clong(2), execvg2), setrlimit(2), unshareg(2), vfork (2), wait(2), daemon(3), capabilities(7), creden-
tials(7)

COLOPHON
This page is part of release 3.27 of the Limen-payes project. Adescription of the project, and informa-
tion about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.

SP-Klausur Manual-Auszug 2012-07-24 2

gets(3)

gets, fgets — get a string from a stream
fputs, puts — output of strings

SYNOPSIS

#include <stdio.h>

char *gets(char *s);

char *fgets(char *s, int n, FILE *strean);
int fputs(const char *s, FILE * strean);
int puts(const char *s);

DESCRIPTION gets/fgets

The gets() function reads characters from the standard input streaninfse€3)), stdin, into the array
pointed to bys, until a nevline character is read or an end-of-file condition is encountered. Timae
character is discarded and the string is terminated with a null character.

The fgets() function reads characters from thigeaminto the array pointed to bg; until n—1 characters
are read, or a newline character is read and transferszdit@an ed-of-file condition is encounteredhe
string is then terminated with a null character.

When usinggets() if the length of an input line exceeds the sizs, dfideterminate behavior may result.
For this reason, it is strongly recommended tets()be avoided in fvar of fgets()

RETURN VALUES

If end-of; is encountered and no charactersehaen read, no characters are transferresiaiod a null

pointer is returned. If a read error occurs, such as trying to use these functions on a file that has not been
opened for reading, a null pointer is returned and the error indicator for the stream is set. If end-of-file is
encountered, theOF indicator for the stream is set. Otherwssis returned.

ERRORS

Thegets()andfgets()functions will fail if data needs to be read and:

EOVERFLOW The file is a regular file and an attempt was made to read ayandéhe offset maxi-
mum associated with the correspondstigam

DESCRIPTION puts/fputs

fputs() writes the string to stream without its trailing’\0’ .

puts() writes the string and a trailing newline tetdout

Calls to the functions described here can beethirith each other and with calls to other output functions
from thestdio library for the same output stream.

RETURN VALUE

puts() andfputs() return a non - rggtive rumber on success, BOF on error.

SP-Klausur Manual-Auszug 2012-07-24 1

socket(2) / ipv6(7) socket(2) / ipv6(7) listen(2) listen(2)

NAME NAME
ipv6, PF_INET6 — Linux IPv6 protocol implementation listen — listen for connections on a socket
SYNOPSIS SYNOPSIS
#include <sys/socket.h> #include <sys/types.h> /* See NOTES */
#include <netinet/in.h> #include <sys/socket.h>
tcp6_soket = socket(PF_INET6, SOCK_STREAM, 0); int listen(int sockfd int backlog;
qﬂs\mlwomm = Bn_mmz_u_ul_zm.ﬁm, SOCK_RAW, protocol); . DESCRIPTION
udp6_soket = socket(PF_INET6, SOCK_DGRAM, protocol); listen() marks the socket referred to byckfdas a passe ocket, that is, as a socket that will be used to
DESCRIPTION accept incoming connection requests usiogep(2).
Linux 2.2 optionally implements the Internet Protoc@sion 6. This man page contains a description of
the IPv6 basic API as implemented by the Linux kernel and glibc 2.1. The interface is based on the BSD The sockfdamgument is a file descriptor that refers to a socket of 8pEK_STREAM or SOCK_SEQ-
sockets interface; seecke(7). PACKET .
The IPv6 API aims to be mostly compatible with v4 API. Only differences are described in this)
man page Y P the) 4 The backlogagument defines the maximum length to which the queue of pending connectisnskio
) ’)) . may grav. If a connection request aves when the queue is full, the client may reeein error with an
To bind anAF_INET6 soclet to ary process the local address should be copied frormézeldr_anyari- indication of ECONNREFUSED or, if the underlying protocol supports retransmission, the request may be
able which hasn6_addrtype. Instatic initializationssNGADDR_ANY_INIT may also be used, which ignored so that a later reattempt at connection succeeds.
expands to a constarression. Bottof them are in network order.
RETURN VALUE
The IPv6 loopback address (::1) igidable in the globain6addr_loopbackvariable. For initializations On success, zero is returned. On errdris eturned, an@rrnois set appropriately.
INBADDR_LOOPBACK_INIT should be used. ERRORS
IPv4 connections can be handled with the v6 API by using the v4-mapped-on-v6 address type; thus a pro- EADDRINUSE
gram only needs only to support this API type to support both protocols. This is handled transparently by Another socket is already listening on the same port.
the address handling functions in libc. EBADF
IPv4 and IPv6 share the local port spa¢hen you get an IPv4 connection or packet to a IPv6 socket its The argumensockfdis not a valid descriptor.
r r ill be m nd i m, .
source address will be mapped to v6 and it will be mapped to v6 ENGTSOCK
Address Format The argumensockfdis not a socket.
struct sockaddr_in6 {
NOTES

uintl6_t sin6_damily; /* AF_INET6 */

uint16_t sin6_port; /* port number */ To accept connections, the following steps are performed:

uint32_t sin6_flavinfo; /* IPv6 flow information */ 1. Asocket is created witsocke(2).
&EQ _3m|mnn._, w.:mlmnnn i 1Pv6 mnnﬁom.m ,< 2. Thesoclet is bound to a local address usbigd(2), so that other sockets may dmnnec(2)ed
uint32_t sin6_scope_id* Scope ID (n&v in 2.4) */ toit
h .
3. Awillingness to accept incoming connections and a queue limit for incoming connections ar
struct in6_addr { specified withisten().

unsigned chars6_addr[16]; /*Pv6 address */ 4. Connectionare accepted witaccep(2).

If the backlogargument is greater than the value/fimoc/sys/net/core/somaxcanthen it is silently trun-

in6_familyis alays set toAF_INET6; sin6_portis the protocol port (sesin_portin ip(7)); sin6_flowinf n the valu
SiN>_amiyis aways Se A Sinb_portis (he protocol por ﬁmmjl—uo_‘ n _—UA Vv Sto_tlowinio cated to that value; the default value in this file is 128.

is the IPv6 flov identifier;sin6_addris the 128-bit IPv6 addressin6_scope_ids an ID of depending of

on the scope of the address. It isvrie Linux 2.4. Linux only supports it for link scope addresses, in that EXAMPLE
casesin6_scope_idontains the interface indéseenetdevicg7)) Seebind(2).
NOTES SEE ALSO
The sockaddr_in6structure is bigger than the genesieckaddr Programs that assume that all address accep(2), bind(2), connec(2), socke(2), socke(7)
types can be stored safely irstauct sokaddrneed to be changed to usteuct sokaddr_stoagefor that
instead.
SEE ALSO

cmsg3),ip(7)

SP-Klausur Manual-Auszug 2012-02-22 1 SP-Klausur Manual-Auszug 2012-07-24 1

malloc(3) malloc(3)

NAME
calloc, malloc, free, realloc — Allocate and free dynamic memory

SYNOPSIS
#include <stdlib.h>

void *calloc(size_tnmembsize_tsize);
void *malloc(size_tsize);

void free(void *ptr);

void *realloc(void *ptr, sze_tsize);

DESCRIPTION

calloc() allocates memory for an array mfnembelements okizebytes each and returns a pointer to the

allocated memoryThe memory is set to zero.
malloc() allocatessizebytes and returns a pointer to the allocated menibimg memory is not cleared.

free() frees the memory space pointed topy, which must hee been returned by a previous callrnal-
loc(), calloc() or realloc(). Otherwise, or iffree(ptr) has already been called before, undefined\hetia
occurs. Ifptris NULL , no gperation is performed.

realloc() changes the size of the memory block pointed tgtoyto size bytes. Thecontents will be
unchanged to the minimum of the old andvrszes; newly allocated memory will be uninitializet. ptr
is NULL , the call is equialent tomalloc(size) if size is equal to zero, the call is egpiént tofree(ptr).
Unlessptris NULL , it must hare been returned by an earlier callrt@lloc(), calloc() or realloc().

RETURN VALUE
For calloc() andmalloc(), the value returned is a pointer to the allocated memdnigh is suitably aligned
for ary kind of variable, oNULL if the request fails.

free() returns no value.

realloc() returns a pointer to the newly allocated memuityich is suitably aligned for grkind of variable
and may be different fromtr, or NULL if the request fails. Isizewas equal to 0, either NULL or a
pointer suitable to be passedites() is returned.If realloc() fails the original block is left untouched - it is
not freed or meed.

CONFORMING TO
ANSI-C

SEE ALSO
brk (2), posix_memaligr(3)

SP-Klausur Manual-Auszug 2012-07-24 1

pthread_create/pthreacit¢3) pthread_create/pthreadit¢3)

NAME
pthread_create — create awntread / pthread_exit — terminate the calling thread

SYNOPSIS
#include <pthread.h>
int pthr ead_create(pthead_t * thread, pthread_attr_t * attr, void * (* start_routing(void *), void *
arg);
void pthread_exit(void *retval);

DESCRIPTION
pthread_createcreates a e thread of control that@cutes concurrently with the calling thread. Thesne
thread applies the functicstart_routinepassing itarg as first argument. The wethread terminates either
explicitly, by calling pthread_exit(3), or implicitly, by returning from thestart_routinefunction. The latter
case is equalent to callingpthread_exit(3) with the result returned tstart_routineas exit code.
Theattr agument specifies thread attributes to be applied to thehread. Seethread_attr_init (3) for a
complete list of thread attributes. Thtr agument can also HeULL , in which case default attributes are
used: the created thread is joinable (not detached) and has default (non real-time) schedyling polic
pthread_exit terminates thexecution of the calling threadAll cleanup handlers that te been set for the
calling thread withpthread_cleanup_puslif3) are &ecuted in reerse order (the most recently pushed han-
dler is executed first). Finalization functions for thread-specific data are then called fayslthat hae
non- NULL values associated with them in the calling thread (sibeead_key_creatg3)). Finally
execution of the calling thread is stopped.
The retval amgument is the return value of the thread. It can be consulted from another thread using
pthread_join(3).

RETURN VALUE
On success, the identifier of thewhg created thread is stored in the location pointed bythteaad argu-
ment, and a 0 is returned. On ey@ron-zero error code is returned.
The pthread_exit function neer returns.

ERRORS
EAGAIN

not enough system resources to create a process fomitieread.
EAGAIN
more tharPTHREAD_THREADS_MAX threads are already aci

AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_join(3), pthread_detach(3), pthread_attr_init (3).

SP-Klausur Manual-Auszug 2012-07-24 1

soclet(2) sockt(2)

NAME
socket — create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain int type int protocol);

DESCRIPTION
socket() creates an endpoint for communication and returns a descriptor.

The domainparameter specifies a communications domain within which communication weilptate;

this selects the protocol family which should be used. The protocol family generally is the same as the
address family for the addresses supplied in later operations on ttet. sbblecurrently understood fer

mats are:

PF_INET ARPA Internet protocols

The socket has the indicatege which specifies the communication semantics. Currently defined types
are:

SOCK_STREAM
SOCK_DGRAM

A SOCK_STREAM type provides sequenced, reliableptway connection-based byte streamds out-of-
band data transmission mechanism may be suppoe&DCK_DGRAM soclet supports datagrams (con-
nectionless, unreliable messages of a fixed (typically small) maximum length).

protocolspecifies a particular protocol to be used with theetoddormallyonly a single protocol exists to
support a particular socket type within &egi protocol family. Howeve, multiple protocols may exist, in
which case a particular protocol must be specified in this maiiherprotocol number to use is particular
to the “communication domain” in which communication is tcetglace. Ifa protocol is specified by the
caller, then it will be packaged into a socketdeoption request and sent to the underlying protocol layers.

Soclets of typeSOCK_STREAM are full-duplex byte streams, similar to pipe# stream socket must be in
aconnectedstate before gndata may be sent or reged on i. A connection to another socket is created
with a connec{3N) call. Once connected, data may be transferred usid(2) andwrite(2) calls or
some variant of theend3N) andrecv(3N) calls. When a session has been completetips€2) may be
performed. Out-of-bandlata may also be transmitted as described ors¢ne(3N) manual page and
receved as escribed on theecv(3N) manual page.

The communications protocols used to implemeBO&K_STREAM insure that data is not lost or dupli-
cated. Ifa pece of data for which the peer protocol haffdr space cannot be successfully transmitted
within a reasonable length of time, then the connection is considerezhlaol calls will indicate an error
with -1 returns and witETIMEDOUT as the specific code in the globaliableerrno. A SIGPIPE signal

is raised if a process sends on a broken stream; this causegrnaesses, which do not handle the signal,

to exit.
RETURN VALUES
A -1lis returned if an error occurs. Otherwise the return value is a descriptor referencing the socket.
ERRORS
Thesoclet() call fai
EACCES Permission to create a socket of the specified type and/or protocol is denied.
ENOMEM Insufficient user memory isvailable.
SEE ALSO

closg?2), read(2), write (2), accep(3N), bind (3N), connec(3N), listen(3N),

SP-Klausur Manual-Auszug 2012-07-24 1

printf(3) printf(3)

NAME

printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf — formatted output wasion
SYNOPSIS

#include <stdio.h>

int printf(const char * format, ...);

tf(FILE * stream const char *format,
t sprintf(char * str, const char *format, ...);
t snprintf(char * str, size_tsize const char *format, ...);

DESCRIPTION
The functions in therintf () family produce output according tof@matas described belo The func-
tions printf () and vprintf () write output tostdout the standard output strearprintf () and vfprintf ()
write output to the gien outputstream sprintf (), snprintf (), vsprintf () andvsnprintf () write to the char
acter stringstr.

The functionssnprintf () andvsnprintf () write at mostizebytes (including the trailing null byte (\0") to
str.

These eight functions write the output under the control fofraat string that specifies mosubsequent
amguments (or @uments accessed via the variable-length argument facilitedarf(3)) are cowerted for
output.

Return value
Upon successful return, these functions return the number of characters printed (not including the tr
"\O' used to end output to strings).

The functionssnprintf () andvsnprintf() do not write more thasizebytes (including the trailing "\0")If

the output was truncated due to this limit then the retahaevis the number of characters (not including
the trailing \0') which wuld have been written to the final string if enough space had beslalble. Thus,

a return value obizeor more means that the output was truncated. (See alse tredier NOTES.)

If an output error is encountered, ayaéve \alue is returned.

Format of the format string
The format string is a character string, beginning and ending in its initial shift statg, iTla@ format
string is composed of zero or more direesi ordinary characters (n&t), which are copied unchanged to
the output stream; and o@@nsion specifications, each of which results in fetching zero or more subsequent
amguments. Eacleorversion specification is introduced by the charaéterand ends with aonversion
specifier In between there may be (in this order) zero or nflags an gtional minimumfield width an
optionalprecisionand an optiondength modifier

The corversion specifier
A character that specifies the type of wasion to be applied. An example for a gersion specifier is:

s The const char *argument is gpected to be a pointer to an array of character type (pointer to a
string). Characterérom the array are written up toufbnot including) a terminating null byte
(\0"; if a precision is specified, no more than the number specified are wiitemrecision is
given, no null byte need be present; if the precision is not specified, or is greater than the size of
the arraythe array must contain a terminating null byte.

SEE ALSO
printf (1), asprintf(3), dprintf (3), scan{3), setlocalé3), wcrtomb(3), wprintf (3), localg5)

SP-Klausur Manual-Auszug 2012-07-24 1

