
opendir/readdir(3)
opendir/readdir(3)

N
A

M
E

opendir −
 open a directory / readdir −

 read a directory

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
dirent.h>

D
IR

 *opendir(const char *n
a

m
e);

struct dirent *readdir(D
IR

 *
d

ir);
int readdir_r(D

IR
 *

d
irp,struct dirent *

e
n

try,struct dirent **
resu

lt);

D
E

S
C

R
IP

T
IO

N
 opendir

T
he

opendir()
function opens a directory stream

 corresponding to the directory
n

a
m

e,and returns a pointer
to the directory stream

.
T

he stream
 is positioned at the first entry in the directory.

R
E

T
U

R
N

 VA
LU

E
T

he
opendir()

function returns a pointer to the directory stream
 or N

U
LL if an error occurred.

D
E

S
C

R
IP

T
IO

N
 readdir

T
he

readdir()
function returns a pointer to a dirent structure representing the next directory entry in the

directory stream
 pointed to bydir.

Itreturns N
U

LL on reaching the end-of-file or if an error occurred.

D
E

S
C

R
IP

T
IO

N
 readdir_r

T
he

readdir_r()
function initializes the structure referenced by

e
n

try
and storesa

pointer to this structure
in

resu
lt.

O
n

successful return, the pointer returned at
*re

su
ltw

ill have the sam
evalue as

the
argum

ent
e

n
try.U

pon reaching the end of the directory stream
, this pointer w

ill ha
ve the value N

U
LL.

T
he data returned byreaddir()

is overw
ritten by subsequent calls toreaddir()

for the
sam

e
directory

stream
.

T
he

d
ire

n
tstructure is defined as follow

s:

struct dirent {
long

d_ino;
/* inode num

ber */
off_t

d_off;
/*

offset to the next dirent */
unsigned shortd_reclen;

/*length of this record */
unsigned chard_type;

/*type of file */
char

d_nam
e[256];/* filenam

e */
};

R
E

T
U

R
N

 VA
LU

E
T

he
readdir()

function returns a pointer to a dirent structure, or N
U

LL if an error occurs or end-of-file is
reached.

readdir_r()
returns 0if successful or an error num

ber to indicate failure.

E
R

R
O

R
SE

A
C

C
E

SP
erm

ission denied.

E
N

O
E

N
TD

irectory does not exist, orna
m

eis an em
pty string.

E
N

O
T

D
IRn

a
m

eis not a directory.

S
P

-K
lausur M

anual-A
uszug

2011-08-02
1

dup(2)
dup(2)

N
A

M
E

dup, dup2 −
 duplicate a file descriptor

S
Y

N
O

P
S

IS#include <
unistd.h>

int dup(int
o

ld
fd);

int dup2(int
o

ld
fd,int

n
ew

fd);

D
E

S
C

R
IP

T
IO

N
dup() anddup2() create a copyofthe file descriptorold

fd.

dup() uses the low
est-num

bered unused descriptor for the ne
w

descriptor.

dup2() m
akesn

ew
fd

be the copy
of

o
ld

fd,closing
n

ew
fdfirst if necessary,but note the follow

ing:

*
If

o
ld

fd
is not a valid file descriptor

,then the call fails, andnew
fdis not closed.

*
If

o
ld

fd
is a valid file descriptor,and

n
ew

fd
has the sam

e value as
o

ld
fd,

then
dup2() does nothing, and

returnsn
ew

fd.

A
fter a successful return fromdup() ordup2(), the old and new

file descriptors m
ay be used interchange-

ably.
T

hey
refer to the sam

e open file description (see
open(2)) and thus share file offset and file status

flags; for exam
ple, if the file offset is m

odified by using
lseek(2) on one of the descriptors, the offset is also

changed for the other.

T
he two

descriptors do not share file descriptor flags (the close-on-e
xec

flag).
T

he
close-on-exec

flag
(F

D
_C

LO
E

X
E

C
;see

fcntl(2)) for the duplicate descriptor is off.

R
E

T
U

R
N

 VA
LU

E
dup() anddup2() return the new

descriptor,or
−

1
ifan

error occurred (in w
hich case,errn

o
is set appropri-

ately).

E
R

R
O

R
SE

B
A

D
F

o
ld

fd
isn’tan

open file descriptor,or
n

ew
fdis out of the allow

ed range for file descriptors.

E
B

U
S

Y
(Linux only) T

his m
ay be returned bydup2() during a race condition w

ithopen(2) anddup().

E
IN

T
R

T
he

dup2() call w
as interrupted by a signal; see

signal(7).

E
M

F
ILE

T
he process already has the m

axim
um

 num
ber of file descriptors open and tried to open a ne

w
one.

C
O

N
F

O
R

M
IN

G
 T

O
S

V
r4, 4.3B

S
D

, P
O

S
IX

.1-2001.

N
O

T
E

S
T

he error returned bydup2() is different from
 that returned byfcntl(...,F

_D
U

P
F

D
,

...)
w

hen
n

ew
fd

is out
of range.

O
n som

e system
s

dup2() also som
etim

es returnsEIN
VA

L
like

F
_D

U
P

F
D

.

If
n

ew
fd

w
as

open, any
errors that w

ould have been reported atclose(2) tim
e are lost.A

careful program
-

m
er w

ill not usedup2() w
ithout closingn

ew
fdfirst.

S
E

E
 A

LS
Oclose(2),fcntl(2),open(2)

C
O

LO
P

H
O

N
T

his page is part of release 3.05 of the Linux
m

a
n

-p
ages

project. A
description of the project, and inform

a-
tion about reporting bugs, can be found at http://w

w
w

.kernel.org/doc/m
an-pages/.

S
P

-K
lausur M

anual-A
uszug

2011-08-02
1

exec(2)
exec(2)

N
A

M
E

exec, execl, execv,execle, execve, execlp, execvp −
 execute a file

S
Y

N
O

P
S

IS#include <
unistd.h>

int execl(const char *p
a

th,const char *a
rg

0,
...,const char *a

rg
n,char *

/*N
U

LL
*/);

int execv(const char *p
a

th,char *consta
rg

v[]);

int execle(const char *p
a

th,char *consta
rg

0
[],

... , const char *a
rg

n,
char *

/*N
U

LL
*/,char *conste

nvp
[]);

int execve
(const char *p

a
th,char *consta

rg
v[]

char *conste
nvp

[]);

int execlp (const char *file,const char *a
rg

0,
...,const char *a

rg
n,char *

/*N
U

LL
*/);

int execvp (const char *file,char *consta
rg

v[]);

D
E

S
C

R
IP

T
IO

N
E

ach of the functions in theexecfam
ily overlays a new

process im
age on an old process.

T
he ne
w

process
im

age is constructed from
 an ordinary

,
executable file.

T
his file is either an e

xecutable object file, or a file
of data for an interpreter

.
T

here can be no return from
 a successful call to one of these functions because

the calling process im
age is o

verlaid by the new
process im

age.

W
hen a C

 program
 is executed, it is called as follow

s:

int m
ain (int argc, char∗argv[], char∗envp[]);

w
here

a
rg

c
is the argum

ent count,arg
v

is an array of character pointers to the argum
ents them

selves, and
e

nvp
is an array of character pointers to the environm

ent strings.
A

s indicated,
a

rg
c

is at least one, and the
first m

em
ber of the array points to a string containing the nam

e of the file.

T
he argum

entsa
rg

0,
...,a

rg
n

point to null-term
inated character strings.

T
hese strings constitute the ar

gu-
m

ent list available to the new
process im

age.C
onventionally at leasta

rg
0

should be present.The
a

rg
0

argum
ent points to a string that is the sam

e as
p

a
th

(or the last com
ponent ofpa

th).
T

he
list of argum

ent
strings is term

inated by a(char∗)0
argum

ent.

T
he

a
rg

v
argum

ent is an array of character pointers to null-term
inated strings.

T
hese strings constitute the

argum
ent list available to the new

process im
age.

B
y convention,a

rg
v

m
ust have atleast one m

em
ber
,and

it should point to a string that is the sam
e as
p

a
th

(or its last com
ponent).The

a
rg

v
argum

ent is term
inated

by a null pointer.

T
he

p
a

th
argum

ent points to a path nam
e that identifies the ne

w
process file.

T
he

file
argum

ent points to the newprocess file.If
file

does not contain a slash character
,the path prefix for

this file is obtained by a search of the directories passed in the
P

AT
H

environm
ent variable (seeenviron(5)).

F
ile descriptors open in the calling process rem

ain open in the ne
w

process.

S
ignals that are being caught by the calling process are set to the default disposition in the ne

w
process

im
age (seesignal(3C

)).
O

therw
ise,the new

process im
age inherits the signal dispositions of the calling

process.

R
E

T
U

R
N

 VA
LU

E
S

If a function in theexecfam
ily returns to the calling process, an error has occurred; the return value is

−
1

and
errno

is set to indicate the error.

S
P

-K
lausur M

anual-A
uszug

2011-08-02
1

fileno(3)
fileno(3)

N
A

M
E

clearerr,feof, ferror,fileno −
 check and reset stream

 status

S
Y

N
O

P
S

IS#include <
stdio.h>

void clearerr(F
ILE

 *
stre

a
m);

int feof(F
ILE

 *
stre

a
m);

int ferror(F
ILE

 *
stre

a
m);

int fileno(F
ILE

 *
stre

a
m);

D
E

S
C

R
IP

T
IO

N
T

he functionclearerr() clears the end-of-file and error indicators for the stream
 pointed to by

stre
a

m.

T
he functionfeof() tests the end-of-file indicator for the stream

 pointed to by
stre

a
m,

returning non-zero if
it is set.

T
he end-of-file indicator can only be cleared by the function

clearerr().

T
he functionferror() tests the error indicator for the stream

 pointed to by
stre

a
m,returning non-zero if it is

set. T
heerror indicator can only be reset by the

clearerr() function.

T
he functionfileno() exam

ines the argum
ent
stre

a
m

and returns its integer descriptor.

F
or

non-locking counterparts, seeunlocked_stdio(3).

E
R

R
O

R
ST

hese functions should not fail and do not set the e
xternal variable

e
rrn

o.
(H

ow
ever, in

case
fileno()

detects that its argum
ent is not a valid stream

, it m
ust return −

1 and set
e

rrn
o

to
E

B
A

D
F

.)

C
O

N
F

O
R

M
IN

G
 T

O
T

he functionsclearerr(),feof(), andferror() conform
 to C

89 and C
99.

S
E

E
 A

LS
Oopen(2),fdopen(3),stdio(3),unlocked_stdio(3)

S
P

-K
lausur M

anual-A
uszug

2011-08-02
1

fopen/fdopen(3)
fopen/fdopen(3)

N
A

M
E

fopen, fdopen −
 stream

 open functions

S
Y

N
O

P
S

IS#include <
stdio.h>

F
ILE

 *fopen(const char *
p

a
th,const char *m

o
d

e);
F

ILE
 *fdopen(int

fild
e

s,const char *m
o

d
e);

D
E

S
C

R
IP

T
IO

N
T

he
fopen

function opens the file w
hose nam

e is the string pointed to by
p

a
th

and associates a stream
 w

ith
it.T

he argum
entm

o
d

epoints to a string beginning w
ith one of the follow

ing sequences (A
dditional characters

m
ay follow

these sequences.):

r
O

pen text file for reading.
T

he stream
 is positioned at the beginning of the file.

r+
O

pen for reading and w
riting.

T
he stream

 is positioned at the beginning of the file.

w
T

runcate file to zero length or create text file for w
riting.

T
he stream

 is positioned at the be
ginning

of the file.

w
+

O
pen for reading and w

riting.
T

he file is created if it does not e
xist, otherw

ise it is truncated.The
stream

 is positioned at the beginning of the file.

a
O

pen for appending (w
riting at end of file).The file is created if it does not e

xist.
T

he
stream

 is
positioned at the end of the file.

a+
O

pen for reading and appending (w
riting at end of file).

T
he file is created if it does not e

xist.
T

he stream
 is positioned at the end of the file.

T
he

fdopen
function associates a stream

 w
ith the existing file descriptor

,
fild

e
s.

T
he

m
o

d
e

of the stream
(one of the values "r", "r+

", "w
", "w

+
", "a", "a+

") m
ust be com

patible w
ith the m

ode of the file descriptor
.

T
he file position indicator of the ne

w
stream

 is set to that belonging tofild
e

s,
and the error and end-of-file

indicators are cleared.M
odes "w

" or "w
+

" do not cause truncation of the file.
T

he file descriptor is not
dup’ed, and w

ill be closed w
hen the stream

 created by
fdopen

is closed.
T

he result of applyingfdopen
to a

shared m
em

ory object is undefined.

R
E

T
U

R
N

 VA
LU

E
U

pon successful com
pletionfopen,

fdopen
and

freopen
return a

F
ILE

pointer.
O

therw
ise,N

U
LL

is
returned and the global variableerrn

o
is set to indicate the error.

E
R

R
O

R
SE

IN
VA

L
T

he
m

o
d

eprovided tofopen,fdopen,or
freopen

w
as

inv alid.

T
he

fopen,fdopen
and

freopen
functions m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the

routine
m

alloc(3).

T
he

fopen
function m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the routine

open(2).

T
he

fdopen
function m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the routine

fcntl(2).

S
E

E
 A

LS
Oopen(2),fclose(3),fileno(3)

S
P

-K
lausur M

anual-A
uszug

2011-08-02
1

sigaction(2)
sigaction(2)

N
A

M
E

sigaction −
 P

O
S

IX
 signal handling functions.

S
Y

N
O

P
S

IS#include <
signal.h>

int sigaction(int
sig

n
u

m,const struct sigaction *a
ct,struct sigaction *o

ld
a

ct);

D
E

S
C

R
IP

T
IO

N
T

he
sigaction

system
 call is used to change the action taken by a process on receipt of a specific signal.

sig
n

u
m

specifies the signal and can be an
y

valid signal exceptSIG
K

ILL
and

S
IG

S
T

O
P.

If
a

ctis non−
null, the new

action for signalsig
n

u
m

is installed from
a

ct.
If

o
ld

a
ctis non−

null, the previous
action is saved

in
o

ld
a

ct.

T
he

sigaction
structure is defined as som

ething like

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_m

ask;
int sa_flags;
void (*sa_restorer)(void);

}

O
n som

e architectures a union is in
volved - do not assign to bothsa

_
h

a
n

d
le

rand
sa

_
sig

a
ctio

n.

T
he

sa
_

re
sto

re
relem

ent is obsolete and should not be used.
P

O
S

IX
 does not specify asa

_
re

sto
re

rele-
m

ent.

sa
_

h
a

n
d

le
rspecifies the action to be associated w

ith
sig

n
u

m
and m

ay beS
IG

_D
F

L
for the default action,

S
IG

_IG
N

to ignore this signal, or a pointer to a signal handling function.

sa
_

m
a

skgives
a

mask of signals w
hich should be blocked during e

xecution of the signal handler
.

In
addi-

tion, the signal w
hich triggered the handler w

ill be blocked, unless the
S

A
_N

O
D

E
F

E
R

orS
A

_N
O

M
A

S
K

flags are used.

sa
_

flag
sspecifies a set of flags w

hich m
odify the beha

viour of the signal handling process. It is form
ed by

the bitw
ise O

R
 of zero or m

ore of the follow
ing:

S
A

_N
O

C
LD

S
T

O
P

If
sig

n
u

m
is

S
IG

C
H

LD
,do

not receive notification w
hen child processes stop (i.e., w

hen
child processes recei

ve one ofS
IG

S
T

O
P,S

IG
T

S
T

P
,S

IG
T

T
IN

orS
IG

T
T

O
U

).

S
A

_R
E

S
TA

R
T

P
rovide behaviour com

patible w
ith B

S
D

 signal sem
antics by m

aking certain system
 calls

restartable across signals.

R
E

T
U

R
N

 VA
LU

E
S

sigaction
returns 0 on success and -1 on error.

E
R

R
O

R
SE

IN
VA

L
A

n invalid signal w
as specified.

T
his w

ill also be generated if an attem
pt is m

ade to change the
action forS

IG
K

ILL
orS

IG
S

T
O

P,w
hich cannot be caught.

S
E

E
 A

LS
Okill(1),kill(2),killpg

(2),pause(2),sigsetops(3),

S
P

-K
lausur M

anual-A
uszug

2011-08-02
1

sigsuspend/sigprocm
ask(2)

sigsuspend/sigprocm
ask(2)

N
A

M
E

sigprocm
ask −

 change and/or exam
ine caller’

s
signal m

ask
sigsuspend −

 install a signal m
ask and suspend caller until signal

S
Y

N
O

P
S

IS#include <
signal.h>

int sigprocm
ask(inth

o
w

,const sigset_t *se
t,sigset_t *o

se
t);

int sigsuspend(const sigset_t *se
t);

D
E

S
C

R
IP

T
IO

N
 sigprocm

ask
T

he
sigprocm

ask()function is used to exam
ine and/or change the caller’

s
signal m

ask.
If the value is

S
IG

_B
LO

C
K

,
the set pointed to by the ar

gum
entse

tis added to the current signal m
ask.

If the value is
S

IG
_U

N
B

LO
C

K
,

the set pointed by the ar
gum

entse
tis rem

oved
from

 the current signal m
ask.

If the v
alue

is
S

IG
_S

E
T

M
A

S
K

,
the current signal m

ask is replaced by the set pointed to by the ar
gum

entse
t.

If
the

argum
ento

se
tis notN

U
LL

,
the previous m

ask is stored in the space pointed to by
o

se
t.

If
the value of the

argum
entse

tis
N

U
LL

,
the value

h
o

w
is not significant and the caller’

s
signal m

ask is unchanged; thus, the
call can be used to inquire about currently blocked signals.

If there are any
pending unblocked signals after the call to

sigprocm
ask(),atleast one of those signals w

ill
be delivered before the call tosigprocm

ask()returns.

It is not possible to block those signals that cannot be ignored this restriction is silently im
posed by the sys-

tem
. S

eesigaction(2).

If
sigprocm

ask()fails, the caller’s
signal m

ask is not changed.

R
E

T
U

R
N

 VA
LU

E
S

O
n success,sigprocm

ask()returns0.
O

n
failure, it returns−

1
and setserrno

to indicate the error.

E
R

R
O

R
Ssigprocm

ask()fails if any
ofthe follow

ing is true:

E
FA

U
LT

se
toro

se
tpoints to an illegaladdress.

E
IN

VA
L

T
he value of theh

o
w

argum
ent is not equal to one of the defined values.

D
E

S
C

R
IP

T
IO

N
 sigsuspend

sigsuspend()replaces the caller’
s

signal m
ask w

ith the set of signals pointed to by the ar
gum

entse
tand

then suspends the caller until deli
very of a signal w

hose action is either to e
xecute a signal catching func-

tion or to term
inate the process.

If the action is to term
inate the process,

sigsuspend()does not return.If the action is to execute a signal
catching function,sigsuspend()returns after the signal catching function returns.

O
n return, the signal

m
ask is restored to the set that existed before the call to

sigsuspend().

It is not possible to block those signals that cannot be ignored (see
signal(5)); this restriction is silently

im
posed by the system

.

R
E

T
U

R
N

 VA
LU

E
S

S
incesigsuspend()suspends process e

xecution indefinitely,there is no successful com
pletion return v

alue.
O

n failure, it returns −
1 and sets

errno
to indicate the error.

E
R

R
O

R
Ssigsuspend()fails if either of the follow

ing is true:

E
FA

U
LT

se
tpoints to an illegaladdress.

E
IN

T
R

A
signal is caught by the calling process and control is returned from

 the signal catching
function.

S
E

E
 A

LS
Osigaction(2),sigsetops(3C

),

S
P

-K
lausur M

anual-A
uszug

2011-08-02
1

sigsetops(3C
)

sigsetops(3C
)

N
A

M
E

sigsetops, sigem
ptyset, sigfillset, sigaddset, sigdelset, sigism

em
ber −

 m
anipulate sets of signals

S
Y

N
O

P
S

IS#include <
signal.h>

int sigem
ptyset(sigset_t *se

t);

int sigfillset(sigset_t *se
t);

int sigaddset(sigset_t *se
t,int

sig
n

o);

int sigdelset(sigset_t *se
t,int

sig
n

o);

int sigism
em

ber(sigset_t *se
t,int

sig
n

o);

D
E

S
C

R
IP

T
IO

N
T

hese functions m
anipulatesig

se
t_

tdata types, representing the set of signals supported by the im
plem

en-
tation.

sigem
ptyset()initializes the set pointed to byse

tto exclude all signals defined by the system
.

sigfillset()initializes the set pointed to byse
tto include all signals defined by the system

.

sigaddset()adds the individual signal specified by the value of
sig

n
o

to the set pointed to byse
t.

sigdelset()deletes the individual signal specified by the value of
sig

n
o

from
 the set pointed to byse

t.

sigism
em

ber()checks w
hether the signal specified by the value of

sig
n

o
is a m

em
ber of the set pointed to

by
se

t.

A
ny

object of type
sig

se
t_

tm
ust be initialized by applying eithersigem

ptyset()or
sigfillset()

before
applying any

other operation.

R
E

T
U

R
N

 VA
LU

E
S

U
pon successful com

pletion, thesigism
em

ber()function returns a value of one if the specified signal is a
m

em
ber of the specified set, or a value of 0 if it is not. U

pon successful com
pletion, the other functions

return a value of 0. O
therw

ise a value of −
1 is returned and

errno
is set to indicate the error.

E
R

R
O

R
Ssigaddset(),sigdelset(),and

sigism
em

ber()w
ill fail if the follow

ing is true:

E
IN

VA
L

T
he value of thesig

n
o

argum
ent is not a valid signal num

ber.

sigfillset()w
ill fail if the follow

ing is true:

E
FA

U
LT

T
he

se
targum

ent specifies an in
valid address.

S
E

E
 A

LS
Osigaction(2),sigpending(2),sigprocm

ask(2),sigsuspend(2),attributes(5),signal(5)

S
P

-K
lausur M

anual-A
uszug

2010-04-09
1

printf(3)
printf(3)

N
A

M
E

printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf −
 form

atted output con
version

S
Y

N
O

P
S

IS#include <
stdio.h>

int printf(const char *
fo

rm
a

t,...);
int fprintf(F

ILE
 *

stre
a

m,const char *fo
rm

a
t,...);

int sprintf(char *
str,const char *fo

rm
a

t,...);
int snprintf(char *

str,size_tsize,const char *fo
rm

a
t,...);

...

D
E

S
C

R
IP

T
IO

N
T

he functions in theprintf() fam
ily produce output according to aform

a
tas described below.

The func-
tions

printf() and
vprintf() w

rite output tostd
o

u
t,

the standard output stream
;

fprintf
() and

vfprintf
()

w
rite output to the given

outputstre
a

m;
sprintf(),snprintf(),vsprintf() and

vsnprintf() w
rite to the char-

acter stringstr.

T
he functionssnprintf() and

vsnprintf() w
rite at m

ostsize
bytes (including the trailing null byte ('\0')) to

str.

T
hese eight functions w

rite the output under the control of a
fo

rm
a

tstring that specifies how
subsequent

argum
ents (or argum

ents accessed via the variable-length argum
ent facilities of

stdarg(3)) are converted for
output.

R
eturn

value
U

pon successful return, these functions return the num
ber of characters printed (not including the trailing

'\0' used to end output to strings).

T
he functionssnprintf() and

vsnprintf() do not w
rite m

ore thansize
bytes (including the trailing '\0').If

the output w
as truncated due to this lim

it then the return v
alue is the num

ber of characters (not including
the trailing '\0') w

hich would have been w
ritten to the final string if enough space had been a

vailable. T
hus,

a
return value ofsizeor m

ore m
eans that the output w

as truncated.
(S

ee also belo
w

under N
O

T
E

S
.)

If an output error is encountered, a ne
gative value is returned.

F
orm

at of the form
at string

T
he form

at string is a character string, beginning and ending in its initial shift state, if an
y.

The form
at

string is com
posed of zero or m

ore directi
ves: ordinary characters (not

%
), w

hich are copied unchanged to
the output stream

; and con
version specifications, each of w

hich results in fetching zero or m
ore subsequent

argum
ents.

E
achconversion specification is introduced by the character

%
,

and ends w
ith aco

nve
rsio

n
sp

e
cifie

r.
In

betw
een there m

ay be (in this order) zero or m
ore

flag
s,

an
optional m

inim
um

fie
ld

 w
id

th,
an

optionalp
re

cisio
nand an optionalle

n
g

th
 m

o
d

ifie
r.

T
he conversion specifier

A
character that specifies the type of con

version to be applied.
A

n exam
ple for a con

version specifier is:

s
T

he
co

n
st ch

a
r *argum

ent is expected to be a pointer to an array of character type (pointer to a
string).

C
haractersfrom

 the array are w
ritten up to (b

ut not including) a term
inating null byte

('\0'); if a precision is specified, no m
ore than the num

ber specified are w
ritten.
If a precision is

given, no null byte need be present; if the precision is not specified, or is greater than the size of
the array,the array m

ust contain a term
inating null byte.

S
E

E
 A

LS
Oprintf(1),asprintf(3),dprintf(3),scanf(3),setlocale(3),w

crtom
b

(3),w
printf(3),locale(5)

S
P

-K
lausur M

anual-A
uszug

2011-08-02
1

stat(2)
stat(2)

N
A

M
E

stat, fstat, lstat −
 get file status

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/stat.h>

#include <
unistd.h>

int stat(const char *p
a

th,struct stat *
buf);

int fstat(int
fd

,struct stat *
buf);

int lstat(const char *p
a

th,struct stat *
buf);

F
eature Test M

acro R
equirem

ents for glibc (see
feature_test_m

acros(7)):

lstat(): _B
S

D
_S

O
U

R
C

E
 || _X

O
P

E
N

_S
O

U
R

C
E

 >
=

 500

D
E

S
C

R
IP

T
IO

N
T

hese functions return inform
ation about a file.

N
o perm

issions are required on the file itself, but —
 in the

case ofstat() andlstat() —
 execute (search) perm

ission is required on all of the directories in
p

a
th

that lead
to the file.

stat() stats the file pointed to bypa
th

and fills in
buf.

lstat() is identical tostat(), except that ifp
a

th
is a sym

bolic link, then the link itself is stat-ed, not the file
that it refers to.

fstat() is identical tostat(), except that the file to be stat-ed is specified by the file descriptor
fd

.

A
ll of these system

 calls return asta
tstructure, w

hich contains the follow
ing fields:

struct stat {
dev_t

st_dev;
/*ID

 of device containing file */
ino_t

st_ino;
/*inode num

ber */
m

ode_t
st_m

ode;
/*protection */

nlink_t
st_nlink;

/*num
ber of hard links */

uid_t
st_uid;

/*user ID
 of ow

ner */
gid_t

st_gid;
/*group ID

 of ow
ner */

dev_t
st_rdev;

/*
device ID

 (if special file) */
off_t

st_size;
/* total size, in bytes */

blksize_t st_blksize; /* blocksize for file system
 I/O

 */
blkcnt_t st_blocks; /*num

ber of blocks allocated */
tim

e_t
st_atim

e;/* tim
e of last access */

tim
e_t

st_m
tim

e;/* tim
e of last m

odification */
tim

e_t
st_ctim

e;/* tim
e of last status change */

};

T
he

st_
d

evfield describes the device on w
hich this file resides.

T
he

st_
rd

evfield describes the device that this file (inode) represents.

T
he

st_
sizefield gives

the size of the file (if it is a regular file or a sym
bolic link) in bytes.

T
he size of a

sym
link is the length of the pathnam

e it contains, w
ithout a trailing null byte.

T
he

st_
b

lo
cksfield indicates the num

ber of blocks allocated to the file, 512-byte units.
(T

his m
ay be

sm
aller thanst_

size/512 w
hen the file has holes.)

T
he

st_
b

lksizefield gives
the "preferred" blocksize for efficient file system

 I/O
.

(W
riting to a file in sm

aller
chunks m

ay cause an inefficient read-m
odify-rew

rite.)

S
P

-K
lausur M

anual-A
uszug

2011-08-02
1

stat(2)
stat(2)

N
ot all of the Linux file system

s im
plem

ent all of the tim
e fields.

S
om

e file system
 types allo

w
m

ounting in
such a w

ay that file accesses do not cause an update of the
st_

a
tim

efield. (S
ee"noatim

e" inm
ount(8).)

T
he field

st_
a

tim
eis changed by file accesses, for exam

ple, by
execve(2),m

knod(2),pipe(2),utim
e(2) and

read(2) (of m
ore than zero bytes).

O
ther routines, like

m
m

ap(2), m
ay or m

ay not updatest_
a

tim
e.

T
he field

st_
m

tim
eis changed by file m

odifications, for exam
ple, by

m
knod(2),truncate(2),utim

e(2) and
w

rite
(2) (of m

ore than zero bytes).Moreover,
st_

m
tim

eof a directory is changed by the creation or dele-
tion of files in that directory.

T
he

st_
m

tim
efield is

n
o

tchanged for changes in o
w

ner,
group, hard link

count, or m
ode.

T
he field

st_
ctim

eis changed by w
riting or by setting inode inform

ation (i.e., o
w

ner,
group, link count,

m
ode, etc.).

T
he follow

ing P
O

S
IX

 m
acros are defined to check the file type using the

st_
m

o
d

efield:

S
_IS

R
E

G
(m

)
is

it a regular file?

S
_IS

D
IR

(m
)

directory?

S
_IS

C
H

R
(m

)
characterdevice?

S
_IS

B
LK

(m
)

blockdevice?

S
_IS

F
IF

O
(m

)
F

IF
O

(nam
ed pipe)?

S
_IS

LN
K

(m
)

sym
boliclink? (N

ot in P
O

S
IX

.1-1996.)

S
_IS

S
O

C
K(m

)
socket? (N

ot in P
O

S
IX

.1-1996.)

R
E

T
U

R
N

 VA
LU

E
O

n success, zero is returned.
O

n error
,−

1
is

returned, ande
rrn

o
is set appropriately.

E
R

R
O

R
SE

A
C

C
E

SS
earch perm

ission is denied for one of the directories in the path prefix of
p

a
th.

(S
ee also

path_resolution(7).)

E
B

A
D

F
fd

is bad.

E
FA

U
LTB

ad address.

E
LO

O
P

Too
m

any
sym

bolic links encountered w
hile tra

versing the path.

E
N

A
M

E
T

O
O

LO
N

G
F

ile nam
e too long.

E
N

O
E

N
TA

com
ponent of the pathpa

th
does not exist, or the path is an em

pty string.

E
N

O
M

E
MO

ut of m
em

ory (i.e., kernel m
em

ory).

E
N

O
T

D
IRA

com
ponent of the path is not a directory.

S
E

E
 A

LS
Oaccess(2),chm

od(2),chow
n(2),fstatat(2),readlink

(2),utim
e(2),capabilities(7),sym

link(7)

S
P

-K
lausur M

anual-A
uszug

2011-08-02
2

w
aitpid(2)

w
aitpid(2)

N
A

M
E

w
aitpid −

 w
ait for child process to change state

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/w

ait.h>

pid_t w
aitpid(pid_t

p
id

,int *
sta

t_
lo

c,int
o

p
tio

n
s);

D
E

S
C

R
IP

T
IO

N
w

aitpid()
suspends the calling process until one of its children changes state; if a child process changed

state prior to the call tow
aitpid(),return is im

m
ediate.p

id
specifies a set of child processes for w

hich sta-
tus is requested.

If
p

id
is equal to(pid_t)−

1,status is requested for an
y

child process.

If
p

id
is greater than(pid_t)0,

it
specifies the processID

of the child process for w
hich status is

requested.

If
p

id
is equal to(pid_t)0

status is requested for an
y

child process w
hose process group

ID
is equal

to that of the calling process.

If
p

id
is less than(pid_t)−

1,
status is requested for an

y
child process w

hose process group
ID

is
equal to the absolute value of

p
id

.

If
w

aitpid()
returns because the status of a child process is a

vailable, then that status m
ay be e

valuated w
ith

the m
acros defined bywstat(5).

If the calling process had specified a non-zero value of
sta

t_
lo

c,the status
of the child process w

ill be stored in the location pointed to by
sta

t_
lo

c.

T
he

o
p

tio
n

sargum
ent is constructed from

 the bitw
ise inclusi

ve
O

R
of zero or m

ore of the following flags,
defined in the header<sys/w

ait.h>:

W
C

O
N

T
IN

U
E

D
T

he status of any
continued child process specified by

p
id,

w
hose status has not

been reported since it continued, is also reported to the calling process.

W
N

O
H

A
N

G
w

aitpid()
w

ill not suspend execution of the calling process if status is not im
m

e-
diately available for one of the child processes specified by

p
id

.

W
N

O
W

A
IT

K
eep the process w

hose status is returned in
sta

t_
lo

c
in a w

aitable state. T
he

process m
ay be w

aited for again w
ith identical results.

R
E

T
U

R
N

 VA
LU

E
S

If
w

aitpid()
returns because the status of a child process is a

vailable, this function returns a value equal to
the processID

of the child process for w
hich status is reported.

If
w

aitpid()
returns due to the deli

very of a
signal to the calling process,

−
1

is returned anderrno
is set toE

IN
T

R
.

If
this function w

as invoked
w

ith
W

N
O

H
A

N
G

set in
o

p
tio

n
s,ithas at least one child process specified by

p
id

for w
hich status is not available,

and status is not available for any
process specified bypid,

0
is returned.O

therw
ise,−

1
is returned, and

errno
is set to indicate the error.

E
R

R
O

R
Sw

aitpid()
w

ill fail if one or m
ore of the follow

ing is true:

E
C

H
ILD

T
he process or process group specified by

p
id

does not exist or is not a child of the call-
ing process or can ne

ver
be

in
the states specified byop

tio
n

s.

E
IN

T
R

w
aitpid()

w
as

interrupted due to the receipt of a signal sent by the calling process.

E
IN

VA
L

A
n invalid value w

as specified forop
tio

n
s.

S
E

E
 A

LS
Oexec(2),exit(2),fork

(2),sigaction(2),w
stat(5)

S
P

-K
lausur M

anual-A
uszug

2011-08-02
1

