
connect(2) connect(2)

NAME
connect − initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *serv_addr, socklen_t addrlen);

DESCRIPTION
The file descriptorsockfdmust refer to a socket. If the socket is of typeSOCK_DGRAM then the
serv_addraddress is the address to which datagrams are sent by default, and the only address from which
datagrams are received. If the socket is of typeSOCK_STREAM or SOCK_SEQPACKET , this call
attempts to make a connection to another socket. Theother socket is specified byserv_addr, which is an
address (of lengthaddrlen) in the communications space of the socket. Eachcommunications space inter-
prets theserv_addrparameter in its own way.

Generally, connection-based protocol sockets may successfullyconnectonly once; connectionless protocol
sockets may useconnectmultiple times to change their association. Connectionless sockets may dissolve
the association by connecting to an address with thesa_familymember ofsockaddrset toAF_UNSPEC.

RETURN VALUE
If the connection or binding succeeds, zero is returned.On error, −1 is returned, anderrno is set appropri-
ately.

ERRORS
The following are general socket errors only. There may be other domain-specific error codes.

EBADF
The file descriptor is not a valid index in the descriptor table.

EFAULT
The socket structure address is outside the user’s address space.

ENOTSOCK
The file descriptor is not associated with a socket.

EISCONN
The socket is already connected.

ECONNREFUSED
No one listening on the remote address.

ENETUNREACH
Network is unreachable.

EADDRINUSE
Local address is already in use.

EAFNOSUPPORT
The passed address didn’t hav ethe correct address family in itssa_familyfield.

EACCES, EPERM
The user tried to connect to a broadcast address without having the socket broadcast flag enabled
or the connection request failed because of a local firewall rule.

SEE ALSO
accept(2), bind(2), listen(2), socket(2), getsockname(2)

SP-Klausur Manual-Auszug 2011-02-16 1

opendir/readdir(3) opendir/readdir(3)

NAME
opendir − open a directory / readdir − read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *name);

struct dirent *readdir(DIR * dir);
int readdir_r(DIR * dirp, struct dirent * entry, struct dirent ** result);

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the directoryname, and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to bydir. It returns NULL on reaching the end-of-file or if an error occurred.

DESCRIPTION readdir_r
The readdir_r() function initializes the structure referenced byentry and storesa pointer to this structure
in result. On successful return, the pointer returned at*result will have the samevalue as the argument
entry. Upon reaching the end of the directory stream, this pointer will have the value NULL.

The data returned byreaddir() is overwritten by subsequent calls toreaddir() for the same directory
stream.

Thedirentstructure is defined as follows:

struct dirent {
long d_ino; /* inode number */
off_t d_off; /* offset to the next dirent */
unsigned shortd_reclen; /*length of this record */
unsigned chard_type; /*type of file */
char d_name[256]; /* filename */

};

RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

readdir_r() returns 0if successful or an error number to indicate failure.

ERRORS
EACCES

Permission denied.

ENOENT
Directory does not exist, ornameis an empty string.

ENOTDIR
nameis not a directory.

SP-Klausur Manual-Auszug 2011-02-16 1

fileno(3) fileno(3)

NAME
clearerr, feof, ferror, fileno − check and reset stream status

SYNOPSIS
#include <stdio.h>

void clearerr(FILE * stream);
int feof(FILE * stream);
int ferror(FILE * stream);
int fileno(FILE * stream);

DESCRIPTION
The functionclearerr() clears the end-of-file and error indicators for the stream pointed to bystream.

The functionfeof() tests the end-of-file indicator for the stream pointed to bystream, returning non-zero if
it is set. The end-of-file indicator can only be cleared by the functionclearerr().

The functionferror () tests the error indicator for the stream pointed to bystream, returning non-zero if it is
set. Theerror indicator can only be reset by theclearerr() function.

The functionfileno() examines the argumentstreamand returns its integer descriptor.

For non-locking counterparts, seeunlocked_stdio(3).

ERRORS
These functions should not fail and do not set the external variable errno. (However, in casefileno()
detects that its argument is not a valid stream, it must return −1 and seterrno to EBADF.)

CONFORMING TO
The functionsclearerr(), feof(), andferror () conform to C89 and C99.

SEE ALSO
open(2), fdopen(3), stdio(3), unlocked_stdio(3)

SP-Klausur Manual-Auszug 2011-02-16 1

fopen/fdopen(3) fopen/fdopen(3)

NAME
fopen, fdopen − stream open functions

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * path, const char *mode);
FILE *fdopen(int fildes, const char *mode);

DESCRIPTION
The fopen function opens the file whose name is the string pointed to bypathand associates a stream with
it.

The argumentmodepoints to a string beginning with one of the following sequences (Additional characters
may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.

r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned at the beginning
of the file.

w+ Open for reading and writing. The file is created if it does not exist, otherwise it is truncated.The
stream is positioned at the beginning of the file.

a Open for appending (writing at end of file).The file is created if it does not exist. Thestream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it does not exist.
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descriptor, fildes. The modeof the stream
(one of the values "r", "r+", "w", "w+", "a", "a+") must be compatible with the mode of the file descriptor.
The file position indicator of the new stream is set to that belonging tofildes, and the error and end-of-file
indicators are cleared.Modes "w" or "w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream created byfdopen is closed. The result of applyingfdopen to a
shared memory object is undefined.

RETURN VALUE
Upon successful completionfopen, fdopen and freopen return aFILE pointer. Otherwise,NULL is
returned and the global variableerrno is set to indicate the error.

ERRORS
EINVAL

Themodeprovided tofopen, fdopen, or freopenwas inv alid.

The fopen, fdopen andfreopen functions may also fail and seterrno for any of the errors specified for the
routinemalloc(3).

Thefopen function may also fail and seterrno for any of the errors specified for the routineopen(2).

Thefdopen function may also fail and seterrno for any of the errors specified for the routinefcntl (2).

SEE ALSO
open(2), fclose(3), fileno(3)

SP-Klausur Manual-Auszug 2011-02-16 1

GETADDRINFO(3) GETADDRINFO(3)

NAME
getaddrinfo, freeaddrinfo, gai_strerror − network address and service translation

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *node, const char *service,
const struct addrinfo *hints,
struct addrinf o ** res);

void freeaddrinfo(struct addrinf o *res);

const char *gai_strerror(int errcode);

DESCRIPTION
Given nodeandservice, which identify an Internet host and a service,getaddrinfo() returns one or more
addrinfostructures, each of which contains an Internet address that can be specified in a call tobind(2) or
connect(2).

Theaddrinfostructure used bygetaddrinfo() contains the following fields:

struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
size_t ai_addrlen;
struct sockaddr *ai_addr;
char *ai_canonname;
struct addrinfo *ai_next;

};

The hints argument points to anaddrinfo structure that specifies criteria for selecting the socket address
structures returned in the list pointed to byres. If hints is not NULL it points to anaddrinfo structure
whoseai_family, ai_socktype, and ai_protocolspecify criteria that limit the set of socket addresses returned
by getaddrinfo(), as follows:

ai_family This field specifies the desired address family for the returned addresses.Valid values for
this field includeAF_INET andAF_INET6 . The valueAF_UNSPEC indicates thatgetad-
drinfo () should return socket addresses for any address family (either IPv4 or IPv6, for
example) that can be used withnodeandservice.

ai_socktype This field specifies the preferred socket type, for example SOCK_STREAM or
SOCK_DGRAM . Specifying 0 in this field indicates that socket addresses of any type can
be returned bygetaddrinfo().

ai_protocol This field specifies the protocol for the returned socket addresses. Specifying 0 in this field
indicates that socket addresses with any protocol can be returned bygetaddrinfo().

ai_flags This field specifies additional options, described below. Multiple flags are specified by logi-
cally OR-ing them together.

All the other fields in the structure pointed to byhintsmust contain either 0 or a null pointer, as appropriate.
Specifying hints as NULL is equivalent to settingai_socktypeand ai_protocol to 0; ai_family to
AF_UNSPEC; andai_flagsto (AI_V4MAPPED | AI_ADDRCONFIG) .

nodespecifies either a numerical network address (for IPv4, numbers-and-dots notation as supported by
inet_aton(3); for IPv6, hexadecimal string format as supported byinet_pton(3)), or a network hostname,

SP-Klausur Manual-Auszug 2011-02-16 1

GETADDRINFO(3) GETADDRINFO(3)

whose network addresses are looked up and resolved. If hints.ai_flagscontains theAI_NUMERICHOST
flag thennode must be a numerical network address.The AI_NUMERICHOST flag suppresses any
potentially lengthy network host address lookups.

If the AI_PASSIVE flag is specified inhints.ai_flags, and node is NULL, then the returned socket
addresses will be suitable forbind(2)ing a socket that will accept(2) connections. The returned socket
address will contain the "wildcard address" (INADDR_ANY for IPv4 addresses,IN6ADDR_ANY_INIT
for IPv6 address).The wildcard address is used by applications (typically servers) that intend to accept
connections on any of the hosts’s network addresses.

The getaddrinfo() function allocates and initializes a linked list ofaddrinfo structures, one for each net-
work address that matchesnodeand service, subject to any restrictions imposed byhints, and returns a
pointer to the start of the list inres. The items in the linked list are linked by theai_nextfield. Thereare
several reasons why the linked list may have more than oneaddrinfostructure, including: the network host
is multi-homed; or the same service is available from multiple socket protocols (oneSOCK_STREAM
address and anotherSOCK_DGRAM address, for example).

If hints.ai_flagsincludes theAI_CANONNAME flag, then theai_canonnamefield of the first of the
addrinfostructures in the returned list is set to point to the official name of the host.

The remaining fields of each returnedaddrinfostructure are initialized as follows:

* Theai_family, ai_socktype, and ai_protocolfields return the socket creation parameters (i.e., these fields
have the same meaning as the corresponding arguments ofsocket(2)). For example,ai_family might
returnAF_INET or AF_INET6 ; ai_socktypemight returnSOCK_DGRAM or SOCK_STREAM; and
ai_protocolreturns the protocol for the socket.

* A pointer to the socket address is placed in theai_addr field, and the length of the socket address, in
bytes, is placed in theai_addrlenfield.

If hints.ai_flagsincludes theAI_ADDRCONFIG flag, then IPv4 addresses are returned in the list pointed
to by result only if the local system has at least one IPv4 address configured, and IPv6 addresses are only
returned if the local system has at least one IPv6 address configured.

If hint.ai_flagsspecifies theAI_V4MAPPED flag, andhints.ai_familywas specified asAF_INET6 , and
no matching IPv6 addresses could be found, then return IPv4-mapped IPv6 addresses in the list pointed to
by result. If both AI_V4MAPPED and AI_ALL are specified inhints.ai_family, then return both IPv6
and IPv4-mapped IPv6 addresses in the list pointed to byresult. AI_ALL is ignored ifAI_V4MAPPED is
not also specified.

The freeaddrinfo() function frees the memory that was allocated for the dynamically allocated linked list
res.

Extensions to getaddrinfo() for Internationalized Domain Names
SEE ALSO

gethostbyname(3), getnameinfo(3), inet(3), hostname(7), ip(7)

SP-Klausur Manual-Auszug 2011-02-16 2

gets(3) gets(3)

NAME
gets, fgets − get a string from a stream
fputs, puts − output of strings

SYNOPSIS
#include <stdio.h>

char *gets(char *s);

char *fgets(char *s, int n, FILE * stream);

int fputs(const char *s, FILE * stream);

int puts(const char *s);

DESCRIPTION gets/fgets
The gets() function reads characters from the standard input stream (seeintro (3)), stdin, into the array
pointed to bys, until a newline character is read or an end-of-file condition is encountered. The newline
character is discarded and the string is terminated with a null character.

The fgets() function reads characters from thestream into the array pointed to bys, until n−1 characters
are read, or a newline character is read and transferred tos, or an end-of-file condition is encountered.The
string is then terminated with a null character.

When usinggets(), if the length of an input line exceeds the size ofs, indeterminate behavior may result.
For this reason, it is strongly recommended thatgets()be avoided in favor of fgets().

RETURN VALUES
If end-of-file is encountered and no characters have been read, no characters are transferred tos and a null
pointer is returned. If a read error occurs, such as trying to use these functions on a file that has not been
opened for reading, a null pointer is returned and the error indicator for the stream is set. If end-of-file is
encountered, theEOF indicator for the stream is set. Otherwises is returned.

ERRORS
Thegets()andfgets()functions will fail if data needs to be read and:

EOVERFLOW The file is a regular file and an attempt was made to read at or beyond the offset maxi-
mum associated with the correspondingstream.

DESCRIPTION puts/fputs
fputs() writes the strings to stream, without its trailing’\0’ .

puts() writes the strings and a trailing newline tostdout.

Calls to the functions described here can be mixed with each other and with calls to other output functions
from thestdio library for the same output stream.

RETURN VALUE
puts() andfputs() return a non - negative number on success, orEOF on error.

SP-Klausur Manual-Auszug 2011-02-16 1

ipv6(7) ipv6(7)

NAME
ipv6, PF_INET6 − Linux IPv6 protocol implementation

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

tcp6_socket = socket(PF_INET6, SOCK_STREAM, 0);
raw6_socket = socket(PF_INET6, SOCK_RAW, protocol);
udp6_socket = socket(PF_INET6, SOCK_DGRAM, protocol);

DESCRIPTION
Linux 2.2 optionally implements the Internet Protocol, version 6. This man page contains a description of
the IPv6 basic API as implemented by the Linux kernel and glibc 2.1. The interface is based on the BSD
sockets interface; seesocket(7).

The IPv6 API aims to be mostly compatible with theip(7) v4 API. Only differences are described in this
man page.

To bind anAF_INET6 socket to any process the local address should be copied from thein6addr_anyvari-
able which hasin6_addr type. In static initializationsIN6ADDR_ANY_INIT may also be used, which
expands to a constant expression. Bothof them are in network order.

The IPv6 loopback address (::1) is available in the globalin6addr_loopbackvariable. For initializations
IN6ADDR_LOOPBACK_INIT should be used.

IPv4 connections can be handled with the v6 API by using the v4-mapped-on-v6 address type; thus a pro-
gram only needs only to support this API type to support both protocols. This is handled transparently by
the address handling functions in libc.

IPv4 and IPv6 share the local port space.When you get an IPv4 connection or packet to a IPv6 socket its
source address will be mapped to v6 and it will be mapped to v6.

Address Format
struct sockaddr_in6 {

uint16_t sin6_family; /* AF_INET6 */
uint16_t sin6_port; /* port number */
uint32_t sin6_flowinfo; /* IPv6 flow information */
struct in6_addr sin6_addr; /* IPv6 address */
uint32_t sin6_scope_id;/* Scope ID (new in 2.4) */

};

struct in6_addr {
unsigned chars6_addr[16]; /*IPv6 address */

};

sin6_familyis always set toAF_INET6 ; sin6_portis the protocol port (seesin_portin ip(7)); sin6_flowinfo
is the IPv6 flow identifier;sin6_addris the 128-bit IPv6 address.sin6_scope_idis an ID of depending of
on the scope of the address. It is new in Linux 2.4. Linux only supports it for link scope addresses, in that
casesin6_scope_idcontains the interface index (seenetdevice(7))

NOTES
The sockaddr_in6structure is bigger than the genericsockaddr. Programs that assume that all address
types can be stored safely in astruct sockaddr need to be changed to usestruct sockaddr_storage for that
instead.

SEE ALSO
cmsg(3), ip(7)

SP-Klausur Manual-Auszug 2011-02-16 1

MKDIR(2) MKDIR(2)

NAME
mkdir − create a directory

SYNOPSIS
#include <sys/stat.h>
#include <sys/types.h>

int mkdir(const char * pathname, mode_tmode);

DESCRIPTION
mkdir () attempts to create a directory namedpathname.

The argumentmodespecifies the permissions to use.It is modified by the process’s umaskin the usual
way: the permissions of the created directory are (mode& ˜umask& 0777). Othermode bits of the created
directory depend on the operating system.For Linux, see below.

The newly created directory will be owned by the effective user ID of the process.If the directory contain-
ing the file has the set-group-ID bit set, or if the file system is mounted with BSD group semantics (mount
-o bsdgroupsor, synonymouslymount -o grpid), the new directory will inherit the group ownership from
its parent; otherwise it will be owned by the effective group ID of the process.

If the parent directory has the set-group-ID bit set then so will the newly created directory.

RETURN VALUE
mkdir () returns zero on success, or −1 if an error occurred (in which case,errno is set appropriately).

ERRORS
EACCES

The parent directory does not allow write permission to the process, or one of the directories in
pathnamedid not allow search permission. (See alsopath_resolution(7).)

EEXIST
pathnamealready exists (not necessarily as a directory).This includes the case wherepathnameis
a symbolic link, dangling or not.

ENOTDIR
A component used as a directory inpathnameis not, in fact, a directory.

EPERM
The file system containingpathnamedoes not support the creation of directories.

SEE ALSO
mkdir (1), chmod(2), chown(2), mkdirat (2), mknod(2), mount(2), rmdir (2), stat(2), umask(2),
unlink (2), path_resolution(7)

SP-Klausur Manual-Auszug 2011-02-16 1

pthread_create/pthread_exit(3) pthread_create/pthread_exit(3)

NAME
pthread_create − create a new thread / pthread_exit − terminate the calling thread

SYNOPSIS
#include <pthread.h>

int pthr ead_create(pthread_t * thread, pthr ead_attr_t * attr, void * (* start_routine)(void *), void *
arg);

void pthread_exit(void *retval);

DESCRIPTION
pthread_createcreates a new thread of control that executes concurrently with the calling thread. The new
thread applies the functionstart_routinepassing itarg as first argument. The new thread terminates either
explicitly, by calling pthread_exit(3), or implicitly, by returning from thestart_routinefunction. The latter
case is equivalent to callingpthread_exit(3) with the result returned bystart_routineas exit code.

Theattr argument specifies thread attributes to be applied to the new thread. Seepthread_attr_init (3) for a
complete list of thread attributes. Theattr argument can also beNULL , in which case default attributes are
used: the created thread is joinable (not detached) and has default (non real-time) scheduling policy.

pthread_exit terminates the execution of the calling thread.All cleanup handlers that have been set for the
calling thread withpthread_cleanup_push(3) are executed in reverse order (the most recently pushed han-
dler is executed first). Finalization functions for thread-specific data are then called for all keys that have
non- NULL values associated with them in the calling thread (seepthread_key_create(3)). Finally,
execution of the calling thread is stopped.

The retval argument is the return value of the thread. It can be consulted from another thread using
pthread_join(3).

RETURN VALUE
On success, the identifier of the newly created thread is stored in the location pointed by thethreadargu-
ment, and a 0 is returned. On error, a non-zero error code is returned.

Thepthread_exit function never returns.

ERRORS
EAGAIN

not enough system resources to create a process for the new thread.

EAGAIN
more thanPTHREAD_THREADS_MAX threads are already active.

AUTHOR
Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_join(3), pthread_detach(3), pthread_attr_init (3).

SP-Klausur Manual-Auszug 2011-02-16 1

socket(3) socket(3)

NAME
socket − create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
socket() creates an endpoint for communication and returns a descriptor.

The domainparameter specifies a communications domain within which communication will take place;
this selects the protocol family which should be used. The protocol family generally is the same as the
address family for the addresses supplied in later operations on the socket. Thecurrently understood for-
mats are:

PF_INET ARPA Internet protocols

The socket has the indicatedtype, which specifies the communication semantics. Currently defined types
are:

SOCK_STREAM
SOCK_DGRAM

A SOCK_STREAM type provides sequenced, reliable, two-way connection-based byte streams.An out-of-
band data transmission mechanism may be supported.A SOCK_DGRAM socket supports datagrams (con-
nectionless, unreliable messages of a fixed (typically small) maximum length).

protocolspecifies a particular protocol to be used with the socket. Normallyonly a single protocol exists to
support a particular socket type within a given protocol family. Howev er, multiple protocols may exist, in
which case a particular protocol must be specified in this manner. The protocol number to use is particular
to the “communication domain” in which communication is to take place. Ifa protocol is specified by the
caller, then it will be packaged into a socket level option request and sent to the underlying protocol layers.

Sockets of typeSOCK_STREAM are full-duplex byte streams, similar to pipes.A stream socket must be in
a connectedstate before any data may be sent or received on it. A connection to another socket is created
with a connect(3N) call. Once connected, data may be transferred usingread(2) andwrite (2) calls or
some variant of thesend(3N) andrecv(3N) calls. When a session has been completed, aclose(2) may be
performed. Out-of-banddata may also be transmitted as described on thesend(3N) manual page and
received as described on therecv(3N) manual page.

The communications protocols used to implement aSOCK_STREAM insure that data is not lost or dupli-
cated. Ifa piece of data for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection is considered broken and calls will indicate an error
with −1 returns and withETIMEDOUT as the specific code in the global variableerrno. A SIGPIPE signal
is raised if a process sends on a broken stream; this causes naive processes, which do not handle the signal,
to exit.

RETURN VALUES
A −1 is returned if an error occurs. Otherwise the return value is a descriptor referencing the socket.

ERRORS
Thesocket() call fails if:

EACCES Permission to create a socket of the specified type and/or protocol is denied.

ENOMEM Insufficient user memory is available.

SEE ALSO
close(2), read(2), write (2), accept(3N), bind(3N), connect(3N), listen(3N),

SP-Klausur Manual-Auszug 2011-02-16 1

unlink(2) unlink(2)

NAME
unlink − remove directory entry

SYNOPSIS
#include <unistd.h>

int unlink(const char * path);

DESCRIPTION
The unlink() function removes a link to a file. It removes the link named by the pathname pointed to by
pathand decrements the link count of the file referenced by the link.

When the file’s link count becomes 0 and no process has the file open, the space occupied by the file will be
freed and the file will no longer be accessible.If one or more processes have the file open when the last
link is removed, the link will be removed beforeunlink() returns, but the removal of the file contents will
be postponed until all references to the file are closed.

RETURN VALUES
Upon successful completion,0 is returned. Otherwise,−1 is returned anderrno is set to indicate the error.

ERRORS
Theunlink() function will fail and not unlink the file if:

EACCES Search permission is denied for a component of thepathprefix.

EACCES Write permission is denied on the directory containing the link to be removed.

ENOENT The named file does not exist or is a null pathname.

ENOTDIR A component of thepathprefix is not a directory.

EPERM The named file is a directory and the effective user of the calling process is not super-
user.

SEE ALSO
rm (1), close(2), link (2), open(2), rmdir (2),

SP-Klausur Manual-Auszug 2011-02-16 1

