opendir/readdir(3) opendir/readdir(3)

NAME
opendir — open a directory / readdir — read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>
DIR *opendir(const char *name;

struct dir ent *readdir(DIR * dir);
int readdir_r(DIR * dirp, struct dir ent *entry, struct dir ent **result);

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the direcéong and returns a pointer
to the directory streaniThe stream is positioned at the first entry in the directory
RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.
DESCRIPTION r eaddir
The readdir() function returns a pointer to a dirent structure representing tttedivectory entry in the
directory stream pointed to lajjr. It returns NULL on reaching the end-of-file or if an error occurred.

DESCRIPTION readdir_r
Thereaddir_r() function initializes the structure referenced egtry and storesa pointer to this structure
in result On successful return, the pointer returnedrasultwill have the samevaue as the agument
entry. Upon reaching the end of the directory stream, this pointer wid e \alue NULL.

The data returned byeaddir() is overwritten by subsequent calls teaddir() for the same directory
stream.

Thedirentstructure is defined as folls:

struct dirent {

long d_ino; /* inode number */
off_t d_of; /* offset to the net dirent */
unsigned shortl_reclen; [Mength of this record */
unsigned chard_type; I*type of file */
char d_name[256]; /* filename */
h
RETURN VALUE

Thereaddir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is

reached.
readdir_r() returns Qf successful or an error number to indicatiufre.
ERRORS
EACCES
Permission denied.
ENOENT
Directory does nobést, ornameis an empty string.
ENOTDIR
nameis not a directory

SP/SOS1-Klausur Manual-Auszug 2010-07-27 1

fileno(3) fileno(3)

NAME
clearery feof, ferror fileno — check and reset stream status

SYNOPSIS
#include <stdio.h>

void clearerr(FILE * stream);
int feof(FILE * stream);
int ferr or(FILE * strean);
int fileno(FILE * strean);
DESCRIPTION
The functionclearerr () clears the end-of-file and error indicators for the stream pointedstielayn

The functionfeof() tests the end-of-file indicator for the stream pointed tsti®am returning non-zero if
it is set. The end-of-file indicator can only be cleared by the funatiearerr ().

The functionferr or() tests the error indicator for the stream pointed tstlam returning non-zero if it is
set. Theerror indicator can only be reset by thearerr () function.

The functionfileno() examines the gumentstreamand returns its intger descriptor
For non-locking counterparts, selocked_stdiq3).

ERRORS
These functions should noaif and do not set thexternal \ariable errno. (However, in casefileno()
detects that its gument is not aalid stream, it must return —1 and setho to EBADF.)

CONFORMING T O
The functionslearerr (), feof(), andferror() conform to C89 and C99.

SEE ALSO
open(2), fdopen(3), stdio(3), unlocked_stdiq3)

SP/SOS1-Klausur Manual-Auszug 2010-07-27 1



fopen/fdopen(3) fopen/fdopen(3)

NAME
fopen, fdopen - stream open functions

SYNOPSIS
#include <stdio.h>

FILE *f open(const char *path, const char *mode;
FILE *fdopen(int fildes const char *modg;

DESCRIPTION
Thefopen function opens the file whose name is the string pointed mathyand associates a stream with
it.

The agumentmodepoints to a string lggnning with one of the follving sequences (Additional characters
may follow these sequences.):

r Open tat file for reading. The stream is positioned at thegbeing of the file.

r+ Open for reading and writingThe stream is positioned at thegbeing of the file.

w Truncate file to zero length or creatgttfile for writing. The stream is positioned at thegbeing
of the file.

w+ Open for reading and writingThe file is created if it does natist, otherwise it is truncatedlhe

stream is positioned at thediening of the file.

a Open for appending (writing at end of fileJhe file is created if it does notist. Thestream is
positioned at the end of the file.

at Open for reading and appending (writing at end of filEhe file is created if it does noxist.
The stream is positioned at the end of the file.

The fdopen function associates a stream with ttxésting file descriptgrfildes The modeof the stream
(one of the =lues "r", "r+", "w", "w+", "a", "a+") must be compatible with the mode of the file descriptor
The file position indicator of the mestream is set to that belongingfitiles and the error and end-of-file
indicators are clearedVlodes "w" or "w+" do not cause truncation of the filEhe file descriptor is not
dup’ed, and will be closed when the stream createfddyyenis closed. The result of applyinfdopento a

shared memory object is undefined.

RETURN VALUE
Upon successful completiofopen, fdopen and freopenreturn aFILE pointer Otherwise,NULL is
returned and the globahsiableerrnois set to indicate the error

ERRORS
EINVAL
Themodeprovided tofopen, fdopen, or freopenwas invdid.

Thefopen, fdopen andfreopenfunctions may alsoail and seerrno for ary of the errors specified for the
routinemalloc(3).

Thefopen function may alsodil and seerrnofor ary of the errors specified for the routinpen(2).
Thefdopen function may alsodil and seerrnofor ary of the errors specified for the routifeatl (2).

SEE ALSO
open(2), fclosg3), fileno(3)

SP/SOS1-Klausur Manual-Auszug 2010-07-27 1

fread/fwrite(3) fread/fwrite(3)

NAME
fread, fwrite — binary stream input/output

SYNOPSIS
#include <stdio.h>

size_t fread(wid * ptr, size_t size size_tnmembFILE * stream);
size_t fwrite(const wid * ptr, sze_tsize sze_tnmemb
FILE * strean);

DESCRIPTION
The functionfread) readsnmembelements of data, eadlizebytes long, from the stream pointed to by
stream storing them at the location\gin by ptr.

The functionfwrite () writes nmembelements of data, eadize bytes long, to the stream pointed to by
stream obtaining them from the location\gn by ptr.
For non-locking counterparts, sealocked_stdid3).

RETURN VALUE
fread) andfwrite () return the number of items successfully read or written (i.e., not the number of charac-
ters). Ifan error occurs, or the end-of-file is reached, the retaluevs a short item count (or zero).

fread)) does not distinguish between end-of-file and emad callers must usteof(3) andferror(3) to
determine which occurred.

CONFORMING TO
C89, POSIX.1-2001.

SEE ALSO
read(2), write (2), feof(3), ferr or(3), unlocked_stdid3)

COLOPHON
This page is part of release 3.05 of the Liman-paes project. Adescription of the project, and informa-
tion about reportingums, can be found at http://wwkernel.og/doc/man-pages/.

SP/SOS1-Klausur Manual-Auszug 2010-07-27 1



pthread_create/pthreacit3) pthread_create/pthreacité3)

NAME
pthread_create — create awnthread / pthread x& — terminate the calling thread
SYNOPSIS
#include <pthread.h>
int pthr ead_create(pthread_t * thread, pthread_attr_t * attr, void * (* start_routing(void *), void *
arg);
void pthr ead_exit(wid *retval);
DESCRIPTION

pthread_cratecreates a methread of control thatecutes concurrently with the calling thread. Thevne
thread applies the functicstart_routine passing itarg as first agument. The ne thread terminates either
explicitly, by calling pthread_exi(3), or implicitly, by returning from thestart_routinefunction. The latter
case is equilent to callingpthread_exi(3) with the result returned kstart_outineas it code.

Theattr aigument specifies thread attites to be applied to thewéhread. Seethread_attr_init(3) for a
complete list of thread attuites. Theattr agument can also BEULL , in which case deiult attritutes are
used: the created thread is joinable (not detached) and laadt ¢ebn real-time) scheduling palic

pthread_exitterminates thexecution of the calling threadAll cleanup handlers that b been set for the
calling thread wittpthread_cleanup_pus(B) are &ecuted in rgerse order (the most recently pushed han-
dler is executed first). Finalization functions for thread-specific data are then called fayalthat hae
non- NULL values associated with them in the calling thread (stteead_key_creatg3)). Finally
execution of the calling thread is stopped.

The retval agument is the returnalue of the thread. It can be consulted from another thread using
pthread_join(3).

RETURN VALUE
On success, the identifier of thewhg created thread is stored in the location pointed bythtreadamgu-
ment, and a 0 is returned. On ey@ron-zero error code is returned.

Thepthr ead_exitfunction neer returns.

ERRORS
EAGAIN
not enough system resources to create a process fowttieread.
EAGAIN
more tharPTHREAD_THREADS_MAX threads are already acti

AUTHOR
Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_join(3), pthread_detacl(3), pthread_attr_init(3).

SP/SOS1-Klausur Manual-Auszug 2010-07-27 1

pthread_mute(3) pthread_mutg3)

NAME
pthread_mute init, pthread_mute lock, pthread_mute trylock, pthread_mute unlock,
pthread_mute_destry — operations on muses

SYNOPSIS
#include <pthread.h>

pthread_mutex_tfastmute = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_trecmutex = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
pthread_mutex_terrchkmutex = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
int pthr ead_mutex_init(pthread_mutex_t *mute&, const pthread_mutexattr_t *muteattr);
int pthr ead_mutex_lock(pthread_mutex_t *mute);

int pthr ead_mutex_trylock(pthread_mutex_t *‘mute);

int pthr ead_mutex_unlock(pthread_mutex_t *mute);

int pthr ead_mutex_destoy(pthread_mutex_t ‘mute);

DESCRIPTION
A mutex is a MUTual EXclusion deice, and is useful for protecting shared data structures from concurrent
modifications, and implementing critical sections and monitors.

A mutex has tvwo possible states: unloell (not evned by ag thread), and logkd (avned by one thread). A
mutex can neer be avned by tvo different threads simultaneousk thread attempting to lock a mute
that is already loaéd by another thread is suspended until theileg thread unlocks the mutérst.

pthread_mutex_init initializes the mute object pointed to bymutex according to the muxeattributes
specified ilfmuteattr. If muteattris NULL , default attritutes are used instead.

The LinuxThreads implementation supports only one mat&ibutes, themute« kind, which is either
“fast”, ‘‘recursive”, or “error checking’ The kind of a mute determines whether it can be leckagin
by a thread that alreadywas it. The defult kind is ‘fast’. Seepthread_mutexattr_init(3) for more
information on mute attributes.

Variables of type pthread_mutex_t can also be initialized staticallyusing the constants
PTHREAD_MUTEX_INITIALIZER  (for fast mutges), PTHREAD_RECURSIVE_MUTEX_INI-
TIALIZER_NP  (for recursve nutexes), and PTHREAD_ERRORCHECK_MUTEX_INITIAL-
IZER_NP (for error checking mutes).

pthread_mutex_locklocks the gien mutex. If the mute is aurrently unlocled, it becomes load and
owned by the calling thread, apthread_mutex_lockreturns immediatelyif the mute is dready locled
by another threaghthr ead_mutex_locksuspends the calling thread until the mitewnlocked.

If the mute is dready locled by the calling thread, the befa of pthread_mutex_lockdepends on the
kind of the mutg. If the mute is o the *fast’ kind, the calling thread is suspended until the mige
unlocked, thus déctively causing the calling thread to deadlock. If the muged the ‘error checking’
kind, pthread_mutex_lockreturns immediately with the error coBEADLK . If the mute is o the
“recursve” kind, pthread_mutex_locksucceeds and returns immediategcording the number of times
the calling thread has loell the mute. An equal number gfthr ead_mutex_unlockoperations must be

SP/SOS1-Klausur Manual-Auszug 2010-07-27 1



pthread_mute(3) pthread_mutg3)

performed before the muteeturns to the unload state.

pthread_mutex_trylock behaes identically topthread_mutex_lock except that it does not block the
calling thread if the muteis dready locled by another thread (or by the calling thread in the case of a
“fast” mutex). Insteadpthr ead_mutex_trylockreturns immediately with the error coBBUSY.

pthread_mutex_unlockunlocks the gien mutex. The mute is assumed to be loeld and wned by the
calling thread on entrance t@thread_mutex_unlock If the mute is o the ‘fast’ kind,
pthread_mutex_unlockalways returns it to the unloekl state. If it is of the'recursive” kind, it decre-
ments the locking count of the mxtéhumber ofpthread_mutex_lockoperations performed on it by the
calling thread), and only when this count reaches zero is the mmitslly unlocled.

On “error checking’ mutexes, pthread_mutex_unlock actually checks at run-time that the muis
locked on entrance, and that iasvlocled by the same thread that ismnealling pthread_mutex_unlock
If these conditions are not met, an error code is returned and the motains unchanged: Fast” and
“recursve” mutexes perform no such checks, thus aliog a locled mute to be unlocked by a thread
other than its wner. This is non-portable beti®r and must not be relied upon.

pthread_mutex_destoy destrys a mutg object, freeing the resources it might hold. The muest be
unlocked on entrance. In the LinuxThreads implementation, no resources are associated withjextss
thuspthread_mutex_destoy actually does nothingxeept checking that the mutés unlocked.

RETURN VALUE
pthread_mutex_initalways returns 0. The other mutéunctions return O on success and a non-zero error
code on error

ERRORS
The pthread_mutex_lockfunction returns the follwing error code on error:

EINVAL
the mute has not been properly initialized.

EDEADLK
the mute is dready locled by the calling thread'¢tror checking’ mutexes anly).

Thepthread_mutex_unlockfunction returns the follwing error code on error:

EINVAL
the mute has not been properly initialized.

EPERM
the calling thread does noivo the mutg (“ error checking’mutexes mly).

The pthread_mutex_destoy function returns the follwing error code on error:

EBUSY
the mute is aurrently locled.

AUTHOR
Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_mutexattr_init(3), pthread_mutexattr_setkind_ng3), pthread_cance(3).

SP/SOS1-Klausur Manual-Auszug 2010-07-27 2

printf(3) printf(3)

NAME
printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf — formatted output wasion

SYNOPSIS
#include <stdio.h>

int printf(const char * format, ...);

int fprintf(FILE * stream const char *format, ...);

int sprintf(char * str, const char *format, ...);

int snprintf(char * str, Sze_tsize const char *format, ...);

DESCRIPTION
The functions in therintf () family produce output according tof@matas described belo The func-
tions printf () and vprintf () write output tostdout the standard output streafiprintf () and vfprintf ()
write output to the gien outputstream sprintf (), snprintf (), vsprintf () andvsnprintf () write to the char
acter stringstr.

The functionssnprintf () andvsnprintf () write at mossizebytes (including the trailing null byte (\0") to
str.

The functionsvprintf (), vfprintf (), vsprintf(), vsnprintf() are equalent to the functionsprintf (),
fprintf (), sprintf (), snprintf(), respectiely, except that thg are called with ava_listinstead of a ariable
number of aguments. Theséunctions do not call thea_endmacro. Becauséhey invoke the va_ag
macro, the &lue ofapis undefined after the calBeestdarg(3).

These eight functions write the output under the control fofraat string that specifies losubsequent
amguments (or uments accessed via thariable-length yument &cilities ofstdarg(3)) are comerted for
output.

Return value
Upon successful return, these functions return the number of characters printed (not including the trailing
\O' used to end output to strings).

The functionssnprintf () andvsnprintf () do not write more thasizebytes (including the trailing "\0")If

the output vas truncated due to this limit then the retuafue is the number of characters (not including
the trailing "\0") which wuld hare keen written to the final string if enough space had bealalble. Thus,

a return \alue ofsizeor more means that the outpuaswtruncated(See also bele under NO'ES.)

If an output error is encountered, ayetéve \alue is returned.

Format of the format string
The format string is a character stringgioeing and ending in its initial shift state, ifyanThe format
string is composed of zero or more direedi ordinary characters (n&t), which are copied unchanged to
the output stream; and a@nsion specifications, each of which results in fetching zero or more subsequent
amguments. Eacleorversion specification is introduced by the charaéterand ends with aorversion
specifier In between there may be (in this order) zero or nfilags, an optional minimumfield width an
optionalprecisionand an optiondength modifier

The aguments must correspond properly (after type promotion) with theersion specifier By default,
the aguments are used in the ordevegi, where each *' and each gersion specifier asks for the xte
amgument (and it is an error if indidiently mary arguments are gen). Onecan also specifyxlicitly
which agument is taén, at each place where agumnent is required, by writing "%m$" instead of ‘%' and
"*m$" instead of "', where the decimal igier m denotes the position in thgament list of the desired
armgument, indeed garting from 1. Thus,

printf("%*d", width, num);

SP/SOS1-Klausur Manual-Auszug 2010-07-27 1



printf(3)

and
printf("%2$*1$d", width, num);

are equident. Thesecond style allos repeated references to the sangerment. TheC99 standard does
not include the style using '$', which comes from the Single Unix Specificdfidthe style using '$' is
used, it must be used throughout for allvesions taking an gument and all width and precisiorgar
ments, It it may be mird with "%%" formats which do not consume aguanent. Therenay be no gps
in the numbers of guments specified using '$"; foraenple, if aguments 1 and 3 are specifiedjuanent 2
must also be specified sowigere in the format string.

For some numeric corersions a radix character ("decimal point") or thousands’ grouping character is used.
The actual character used depends oL @eNUMERIC part of the localeThe POSIX locale uses ' as
radix characterand does not hee a gouping characterThus,

printf("%'.2f", 1234567.89);

results in "1234567.89" in the POSIX locale, in "1234567,89" in the nl_NL locale, and in "1.234.567,89" in
the da_DK locale.

The corversion specifier

A character that specifies the type ofwasion to be appliedAn example for a coversion specifier is:

s The const har * agument is gpected to be a pointer to an array of character type (pointer to a
string). Characterfrom the array are written up toudnot including) a terminating null byte
(\0"; if a precision is specified, no more than the number specified are wift@mrecision is
given, no null byte need be present; if the precision is not specified, or is greater than the size of
the arraythe array must contain a terminating null byte.

SEE ALSO

printf (1), asprintf(3), dprintf (3), scan{3), setlocal&3), wcrtomb(3), wprintf (3), localg(5)

COLOPHON

This page is part of release 3.05 of the Liman-paes project. Adescription of the project, and informa-
tion about reportingums, can be found at http://wwkernel.og/doc/man-pages/.

SP/SOS1-Klausur Manual-Auszug 2010-07-27 2

stat(2) stat(2)

NAME
stat, fstat, Istat — get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.n>
#include <unistd.h>

int stat(const char *path, struct stat * buf);
int fstat(int fd, struct stat * buf);
int Istat(const char *path, ruct stat * buf );

Feature &st Macro Requirements for glibc (feature_test_macoy7)):

Istat(): _BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
These functions return information about a filo permissions are required on the file itself, - in the
case ofstat() andlstat() — execute (search) permission is required on all of the directoripaththat lead
to the file.

stat() stats the file pointed to tpathand fills inbuf .

Istat() is identical tostat(), except that ifpathis a symbolic link, then the link itself is stat-ed, not the file

that it refers to.

fstat() is identical tostat(), except that the file to be stat-ed is specified by the file descfiptor
All of these system calls returrstatstructure, which contains the foing fields:

struct stat {
dev_t st_de; /*ID of device containing file */
ino_t st_ino; /*inode number */
mode_t st_mode; /protection */
nlink_t st_nlink; /*number of hard links */
uid_t st_uid; /*user ID of evner */
gid_t st_gid; /*group ID of avner */
dev_t st_rde; /* device ID (if special file) */
off_t st _size; /*total size, in bytes */
blksize_t st_blksize; /* blocksize for file system I/O */
blkent_t st_blocks; /humber of blocks allocated */
time_t st_atime;/* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

h

Thest_de field describes the gize on which this file resides.
Thest_rdev field describes the dize that this file (inode) represents.

The st_sizefield gives the size of the file (if it is a gailar file or a symbolic link) in bytesThe size of a
symlink is the length of the pathname it contains, without a trailing null byte.

The st_blodks field indicates the number of blocks allocated to the file, 512-byte ufiitis may be
smaller tharst_sizé512 when the file has holes.)

Thest_blksizdield gives the "preferred” blocksize for fidient file system 1/O.(Writing to a file in smaller
chunks may cause an ifiefent read-modify-rerite.)

SP/SOS1-Klausur Manual-Auszug 2010-07-27 1



stat(2) stat(2)

Not all of the Linux file systems implement all of the time fiel8sme file system types allanounting in
such a wy that file accesses do not cause an update of thémefield. (See'noatime" inmount(8).)

The fieldst_atimeis changed by file accesses, faample, byexec\e(2), mknod(2), pipe(2), utime(2) and
read(2) (of more than zero bytespther routines, lie mmap(2), may or may not updagt_atime

The fieldst_mtimeis changed by file modifications, foxample, bymknod(2), truncate(2), utime(2) and
write (2) (of more than zero bytesMoreover, st_mtimeof a directory is changed by the creation or dele-
tion of files in that directory The st_mtimefield is not changed for changes iwaer, group, hard link
count, or mode.

The fieldst_ctimeis changed by writing or by setting inode information (i.evper, group, link count,

mode, etc.).
The folloving POSIX macros are defined to check the file type usinsttineoddield:
S_ISREG(m) isit a regular file?
S_ISDIR(m) directory?
S_ISCHR(m) charactedevice?
S_ISBLK(m) blockdevice?
S_ISFIFO(m) FIFO(named pipe)?
S_ISLNK(m) symboliclink? (Not in POSIX.1-1996.)

S_ISSOCK(m) soclet? (Not in POSIX.1-1996.)

RETURN VALUE
On success, zero is returnedn error -1 is returned, anérrnois set appropriately

ERRORS
EACCES
Search permission is denied for one of the directories in the path prefiatiof (See also
path_resolution(7).)
EBADF
fdis bad.
EFAULT
Bad address.
ELOOP
Too mary symbolic links encountered while trersing the path.
ENAMET OOLONG
File name too long.
ENOENT
A component of the pathathdoes not eist, or the path is an empty string.
ENOMEM
Out of memory (i.e., &rnel memory).
ENOTDIR
A component of the path is not a directory
SEE ALSO

accesg?), chmod(2), chown(2), fstatat(2), readlink (2), utime(2), capabilities(7), symlink(7)

SP/SOS1-Klausur Manual-Auszug 2010-07-27 2



