
accept(3) accept(3)

NAME
accept − accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr * addr, int * addrlen);

DESCRIPTION
The arguments is a socket that has been created withsocket(3N) and bound to an address withbind(3N),
and that is listening for connections after a call tolisten(3N). Theaccept()function extracts the first con-
nection on the queue of pending connections, creates a new socket with the properties ofs, and allocates a
new file descriptor, ns, for the socket. If no pending connections are present on the queue and the socket is
not marked as non-blocking,accept() blocks the caller until a connection is present.If the socket is
marked as non-blocking and no pending connections are present on the queue,accept()returns an error as
described below. The accept() function uses thenetconfig(4) file to determine theSTREAMSdevice file
name associated withs. This is the device on which the connect indication will be accepted.The accepted
socket,ns, is used to read and write data to and from the socket that connected tons; it i s not used to accept
more connections.The original socket (s) remains open for accepting further connections.

The argumentaddr is a result parameter that is filled in with the address of the connecting entity as it is
known to the communications layer. The exact format of theaddr parameter is determined by the domain
in which the communication occurs.

The argumentaddrlen is a value-result parameter. Initially, it contains the amount of space pointed to by
addr; on return it contains the length in bytes of the address returned.

Theaccept()function is used with connection-based socket types, currently withSOCK_STREAM.

It is possible toselect(3C) orpoll(2) a socket for the purpose of anaccept()by selecting or polling it for a
read. However, this will only indicate when a connect indication is pending; it is still necessary to call
accept().

RETURN VALUES
Theaccept()function returns−1 on error. If i t succeeds, it returns a non-negative integer that is a descrip-
tor for the accepted socket.

ERRORS
accept()will f ail if:

EBADF The descriptor is invalid.

EINTR The accept attempt was interrupted by the delivery of a signal.

EMFILE The per-process descriptor table is full.

ENODEV The protocol family and type corresponding tos could not be found in thenetcon-
fig file.

ENOMEM There was insufficient user memory available to complete the operation.

EPROT O A protocol error has occurred; for example, theSTREAMSprotocol stack has not
been initialized or the connection has already been released.

EWOULDBLOCK The socket is marked as non-blocking and no connections are present to be
accepted.

SEE ALSO
poll(2), bind(3N), connect(3N), listen(3N), select(3C),socket(3N), netconfig(4), attrib utes(5), socket(5)

SP-Klausur Manual-Auszug 2010-04-09 1

bind(3) bind(3)

NAME
bind − bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int bind(int s, const struct sockaddr *name, int namelen);

DESCRIPTION
bind() assigns a name to an unnamed socket. Whena socket is created withsocket(3N), it exists in a name
space (address family) but has no name assigned.bind() requests that the name pointed to bynamebe
assigned to the socket.

RETURN VALUES
If the bind is successful,0 is returned.A return value of−1 indicates an error, which is further specified in
the globalerrno.

ERRORS
Thebind() call will fail if:

EACCES The requested address is protected and the current user has inadequate permission
to access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available on the local machine.

EBADF s is not a valid descriptor.

EINVAL namelenis not the size of a valid address for the specified address family.

EINVAL The socket is already bound to an address.

ENOSR There were insufficient STREAMSresources for the operation to complete.

ENOTSOCK s is a descriptor for a file, not a socket.

The following errors are specific to binding names in theUNIX domain:

EACCES Search permission is denied for a component of the path prefix of the pathname in
name.

EIO An I/O error occurred while making the directory entry or allocating the inode.

EISDIR A null pathname was specified.

ELOOP Too many symbolic links were encountered in translating the pathname inname.

ENOENT A component of the path prefix of the pathname innamedoes not exist.

ENOTDIR A component of the path prefix of the pathname innameis not a directory.

EROFS The inode would reside on a read-only file system.

SEE ALSO
unlink (2), socket(3N), attrib utes(5), socket(5)

NOTES
Binding a name in theUNIX domain creates a socket in the file system that must be deleted by the caller
when it is no longer needed (usingunlink (2)).

The rules used in name binding vary between communication domains.

SP-Klausur Manual-Auszug 2010-04-09 1

dup(2) dup(2)

NAME
dup, dup2 − duplicate a file descriptor

SYNOPSIS
#include <unistd.h>

int dup(int oldfd);
int dup2(int oldfd, int newfd);

DESCRIPTION
dup() anddup2() create a copy of the file descriptoroldfd.

dup() uses the lowest-numbered unused descriptor for the new descriptor.

dup2() makesnewfd be the copy of oldfd, closingnewfdfirst if necessary, but note the following:

* I f oldfd is not a valid file descriptor, then the call fails, andnewfd is not closed.

* I f oldfd is a valid file descriptor, and newfd has the same value asoldfd, thendup2() does nothing, and
returnsnewfd.

After a successful return fromdup() or dup2(), the old and new file descriptors may be used interchange-
ably. They refer to the same open file description (seeopen(2)) and thus share file offset and file status
flags; for example, if the file offset is modified by usinglseek(2) on one of the descriptors, the offset is also
changed for the other.

The two descriptors do not share file descriptor flags (the close-on-exec flag). Theclose-on-exec flag
(FD_CLOEXEC ; seefcntl (2)) for the duplicate descriptor is off.

RETURN VALUE
dup() anddup2() return the new descriptor, or −1 if an error occurred (in which case,errno is set appropri-
ately).

ERRORS
EBADF

oldfd isn’t an open file descriptor, or newfd is out of the allowed range for file descriptors.

EBUSY
(Linux only) This may be returned bydup2() during a race condition withopen(2) anddup().

EINTR
Thedup2() call was interrupted by a signal; seesignal(7).

EMFILE
The process already has the maximum number of file descriptors open and tried to open a new
one.

CONFORMING T O
SVr4, 4.3BSD, POSIX.1-2001.

NOTES
The error returned bydup2() is different from that returned byfcntl(..., F_DUPFD, ...) whennewfd is out
of range.On some systemsdup2() also sometimes returnsEINVAL likeF_DUPFD.

If newfd was open, any errors that would have been reported atclose(2) time are lost.A careful program-
mer will not usedup2() without closingnewfdfirst.

SEE ALSO
close(2), fcntl (2), open(2)

COLOPHON
This page is part of release 3.05 of the Linuxman-pages project. Adescription of the project, and informa-
tion about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.

SP-Klausur Manual-Auszug 2010-04-09 1

exec(2) exec(2)

NAME
exec, execl, execv, execle, execve, execlp, execvp − execute a file

SYNOPSIS
#include <unistd.h>

int execl(const char *path, const char *arg0, . . ., const char *argn, char * /*NULL*/);

int execv(const char *path, char *const argv[]);

int execle(const char *path,char *const arg0[] , . . . , const char *argn,
char * /*NULL*/ , char *const envp[]);

int execve (const char *path, char *const argv[] char *const envp[]);

int execlp (const char *file, const char *arg0, . . ., const char *argn, char * /*NULL*/);

int execvp (const char *file, char *const argv[]);

DESCRIPTION
Each of the functions in theexecfamily overlays a new process image on an old process.The new process
image is constructed from an ordinary, executable file. This file is either an executable object file, or a file
of data for an interpreter. There can be no return from a successful call to one of these functions because
the calling process image is overlaid by the new process image.

When a C program is executed, it is called as follows:

int main (int ar gc, char∗argv[], char ∗envp[]);

whereargc is the argument count,argv is an array of character pointers to the arguments themselves, and
envpis an array of character pointers to the environment strings.As indicated,argc is at least one, and the
first member of the array points to a string containing the name of the file.

The argumentsarg0, . . ., argn point to null-terminated character strings.These strings constitute the argu-
ment list available to the new process image.Conventionally at leastarg0 should be present.The arg0
argument points to a string that is the same aspath (or the last component ofpath). Thelist of argument
strings is terminated by a(char ∗)0 argument.

Theargv argument is an array of character pointers to null-terminated strings.These strings constitute the
argument list available to the new process image.By convention,argv must have at least one member, and
it should point to a string that is the same aspath (or its last component).Theargv argument is terminated
by a null pointer.

Thepath argument points to a path name that identifies the new process file.

Thefile argument points to the new process file.If file does not contain a slash character, the path prefix for
this file is obtained by a search of the directories passed in thePATH environment variable (seeenvir on(5)).

File descriptors open in the calling process remain open in the new process.

Signals that are being caught by the calling process are set to the default disposition in the new process
image (seesignal(3C)). Otherwise,the new process image inherits the signal dispositions of the calling
process.

RETURN VALUES
If a function in theexecfamily returns to the calling process, an error has occurred; the return value is−1
anderrno is set to indicate the error.

SP-Klausur Manual-Auszug 2010-04-09 1

fileno(3) fileno(3)

NAME
clearerr, feof, ferror, fileno − check and reset stream status

SYNOPSIS
#include <stdio.h>

void clearerr(FILE * stream);
int feof(FILE * stream);
int ferr or(FILE * stream);
int fileno(FILE * stream);

DESCRIPTION
The functionclearerr () clears the end-of-file and error indicators for the stream pointed to bystream.

The functionfeof() tests the end-of-file indicator for the stream pointed to bystream, returning non-zero if
it is set. The end-of-file indicator can only be cleared by the functionclearerr ().

The functionferr or() tests the error indicator for the stream pointed to bystream, returning non-zero if it is
set. Theerror indicator can only be reset by theclearerr () function.

The functionfileno() examines the argumentstreamand returns its integer descriptor.

For non-locking counterparts, seeunlocked_stdio(3).

ERRORS
These functions should not fail and do not set the external variable errno. (However, in casefileno()
detects that its argument is not a valid stream, it must return −1 and seterrno to EBADF.)

CONFORMING T O
The functionsclearerr (), feof(), andferr or() conform to C89 and C99.

SEE ALSO
open(2), fdopen(3), stdio(3), unlocked_stdio(3)

SP-Klausur Manual-Auszug 2010-04-09 1

fopen/fdopen(3) fopen/fdopen(3)

NAME
fopen, fdopen − stream open functions

SYNOPSIS
#include <stdio.h>

FILE *f open(const char *path, const char *mode);
FILE *fdopen(int fildes, const char *mode);

DESCRIPTION
The fopen function opens the file whose name is the string pointed to bypathand associates a stream with
it.

The argumentmodepoints to a string beginning with one of the following sequences (Additional characters
may follow these sequences.):

r Open text file for reading.The stream is positioned at the beginning of the file.

r+ Open for reading and writing.The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned at the beginning
of the file.

w+ Open for reading and writing.The file is created if it does not exist, otherwise it is truncated.The
stream is positioned at the beginning of the file.

a Open for appending (writing at end of file).The file is created if it does not exist. Thestream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file).The file is created if it does not exist.
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descriptor, fildes. The modeof the stream
(one of the values "r", "r+", "w", "w+", "a", "a+") must be compatible with the mode of the file descriptor.
The file position indicator of the new stream is set to that belonging tofildes, and the error and end-of-file
indicators are cleared.Modes "w" or "w+" do not cause truncation of the file.The file descriptor is not
dup’ed, and will be closed when the stream created byfdopen is closed.The result of applyingfdopen to a
shared memory object is undefined.

RETURN VALUE
Upon successful completionfopen, fdopen and fr eopen return aFILE pointer. Otherwise,NULL is
returned and the global variableerrno is set to indicate the error.

ERRORS
EINVAL

Themodeprovided tofopen, fdopen, or fr eopenwas inv alid.

The fopen, fdopen andfr eopenfunctions may also fail and seterrno for any of the errors specified for the
routinemalloc(3).

Thefopen function may also fail and seterrno for any of the errors specified for the routineopen(2).

Thefdopen function may also fail and seterrno for any of the errors specified for the routinefcntl (2).

SEE ALSO
open(2), fclose(3), fileno(3)

SP-Klausur Manual-Auszug 2010-04-09 1

getc/fgets(3) getc/fgets(3)

NAME
fgetc, fgets, getc, getchar, gets, ungetc − input of characters and strings

SYNOPSIS
#include <stdio.h>

int fgetc(FILE * stream);
char *fgets(char *s, int size, FILE * stream);
int getc(FILE * stream);
int getchar(void);
char *gets(char *s);
int ungetc(int c, FILE * stream);

DESCRIPTION
fgetc() reads the next character fromstreamand returns it as anunsigned char cast to anint, or EOF on
end of file or error.

getc() is equivalent to fgetc() except that it may be implemented as a macro which evaluatesstreammore
than once.

getchar() is equivalent togetc(stdin).

gets() reads a line fromstdin into the buffer pointed to bys until either a terminating newline or EOF,
which it replaces with’\0’ . No check for buffer overrun is performed (seeBUGS below).

fgets() reads in at most one less thansizecharacters fromstreamand stores them into the buffer pointed to
by s. Reading stops after anEOF or a newline. If a newline is read, it is stored into the buffer. A ’\0’ is
stored after the last character in the buffer.

ungetc() pushesc back tostream, cast tounsigned char, where it is available for subsequent read opera-
tions. Pushed-backcharacters will be returned in reverse order; only one pushback is guaranteed.

Calls to the functions described here can be mixed with each other and with calls to other input functions
from thestdio library for the same input stream.

For non-locking counterparts, seeunlocked_stdio(3).

RETURN VALUE
fgetc(), getc() andgetchar() return the character read as anunsigned char cast to anint or EOF on end of
file or error.

gets() andfgets() returns on success, and NULL on error or when end of file occurs while no characters
have been read.

ungetc() returnsc on success, orEOF on error.

CONFORMING T O
C89, C99.LSB deprecatesgets().

BUGS
Never usegets(). Becauseit is impossible to tell without knowing the data in advance how many characters
gets() will read, and becausegets() will continue to store characters past the end of the buffer, it is
extremely dangerous to use.It has been used to break computer security. Usefgets() instead.

It is not advisable to mix calls to input functions from thestdio library with low-level calls to read(2) for
the file descriptor associated with the input stream; the results will be undefined and very probably not what
you want.

SEE ALSO
read(2), write (2), ferr or(3), fgetwc(3), fgetws(3), fopen(3), fr ead(3), fseek(3), getline(3), getwchar(3),
puts(3), scanf(3), ungetwc(3), unlocked_stdio(3)

SP-Klausur Manual-Auszug 2010-04-09 1

ip(7) ip(7)

NAME
ip − Linux IPv4 protocol implementation

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

tcp_socket = socket(PF_INET, SOCK_STREAM, 0);
raw_socket = socket(PF_INET, SOCK_RAW, protocol);
udp_socket = socket(PF_INET, SOCK_DGRAM, protocol);

DESCRIPTION
The programmer’s interface is BSD sockets compatible.For more information on sockets, seesocket(7).

An IP socket is created by calling thesocket(2) function assocket(PF_INET, socket_type, protocol).
Valid socket types areSOCK_STREAM to open atcp(7) socket, SOCK_DGRAM to open audp(7)
socket, orSOCK_RAW to open araw(7) socket to access the IP protocol directly. protocol is the IP proto-
col in the IP header to be received or sent. Theonly valid values forprotocol are0 and IPPROT O_TCP
for TCP sockets and0 andIPPROT O_UDP for UDP sockets.

When a process wants to receive new incoming packets or connections, it should bind a socket to a local
interface address usingbind(2). Only one IP socket may be bound to any giv en local (address, port) pair.
When INADDR_ANY is specified in the bind call the socket will be bound toall local interfaces. When
listen(2) or connect(2) are called on a unbound socket the socket is automatically bound to a random free
port with the local address set toINADDR_ANY .

ADDRESS FORMAT
An IP socket address is defined as a combination of an IP interface address and a port number. The basic IP
protocol does not supply port numbers, they are implemented by higher level protocols like tcp(7).

struct sockaddr_in {
sa_family_t sin_family; /* address family: AF_INET */
u_int16_t sin_port; /* port in network byte order */
struct in_addrsin_addr; /*internet address */

};
/* Internet address. */
struct in_addr {

u_int32_t s_addr; /* address in network byte order */
};

sin_family is always set toAF_INET . This is required; in Linux 2.2 most networking functions return
EINVAL when this setting is missing.sin_portcontains the port in network byte order. The port numbers
below 1024 are called reserved ports. Only processes with effective user id 0 or the
CAP_NET_BIND_SERVICE capability maybind(2) to these sockets.

sin_addris the IP host address.Theaddr member ofstruct in_addr contains the host interface address in
network order. in_addr should be only accessed using theinet_aton(3), inet_addr(3), inet_makeaddr(3)
library functions or directly with the name resolver (seegethostbyname(3)).

Note that the address and the port are always stored in network order. In particular, this means that you
need to callhtons(3) on the number that is assigned to a port. All address/port manipulation functions in
the standard library work in network order.

SEE ALSO
sendmsg(2), recvmsg(2), socket(7), netlink (7), tcp(7), udp(7), raw(7), ipfw (7)

SP-Klausur Manual-Auszug 2010-04-09 1

ipv6(7) ipv6(7)

NAME
ipv6, PF_INET6 − Linux IPv6 protocol implementation

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

tcp6_socket = socket(PF_INET6, SOCK_STREAM, 0);
raw6_socket = socket(PF_INET6, SOCK_RAW, protocol);
udp6_socket = socket(PF_INET6, SOCK_DGRAM, protocol);

DESCRIPTION
Linux 2.2 optionally implements the Internet Protocol, version 6. This man page contains a description of
the IPv6 basic API as implemented by the Linux kernel and glibc 2.1.The interface is based on the BSD
sockets interface; seesocket(7).

The IPv6 API aims to be mostly compatible with theip(7) v4 API. Only differences are described in this
man page.

To bind anAF_INET6 socket to any process the local address should be copied from thein6addr_anyvari-
able which hasin6_addr type. In static initializationsIN6ADDR_ANY_INIT may also be used, which
expands to a constant expression. Bothof them are in network order.

The IPv6 loopback address (::1) is available in the globalin6addr_loopback variable. For initializations
IN6ADDR_LOOPBACK_INIT should be used.

IPv4 connections can be handled with the v6 API by using the v4-mapped-on-v6 address type; thus a pro-
gram only needs only to support this API type to support both protocols.This is handled transparently by
the address handling functions in libc.

IPv4 and IPv6 share the local port space.When you get an IPv4 connection or packet to a IPv6 socket its
source address will be mapped to v6 and it will be mapped to v6.

Addr ess Format
struct sockaddr_in6 {

uint16_t sin6_family; /* AF_INET6 */
uint16_t sin6_port; /* port number */
uint32_t sin6_flowinfo; /* IPv6 flow information */
struct in6_addr sin6_addr; /* IPv6 address */
uint32_t sin6_scope_id;/* Scope ID (new in 2.4) */

};

struct in6_addr {
unsigned chars6_addr[16]; /*IPv6 address */

};

sin6_familyis always set toAF_INET6 ; sin6_portis the protocol port (seesin_portin ip(7)); sin6_flowinfo
is the IPv6 flow identifier;sin6_addris the 128-bit IPv6 address.sin6_scope_idis an ID of depending of
on the scope of the address.It is new in Linux 2.4. Linux only supports it for link scope addresses, in that
casesin6_scope_idcontains the interface index (seenetdevice(7))

NOTES
The sockaddr_in6structure is bigger than the genericsockaddr. Programs that assume that all address
types can be stored safely in astruct sockaddr need to be changed to usestruct sockaddr_storage for that
instead.

SEE ALSO
cmsg(3), ip(7)

SP-Klausur Manual-Auszug 2010-04-09 1

sigaction(2) sigaction(2)

NAME
sigaction − POSIX signal handling functions.

SYNOPSIS
#include <signal.h>

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

DESCRIPTION
Thesigactionsystem call is used to change the action taken by a process on receipt of a specific signal.

signumspecifies the signal and can be any valid signal exceptSIGKILL andSIGSTOP.

If act is non−null, the new action for signalsignumis installed fromact. If oldact is non−null, the previous
action is saved in oldact.

Thesigactionstructure is defined as something like

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

}

On some architectures a union is involved - do not assign to bothsa_handlerandsa_sigaction.

The sa_restorer element is obsolete and should not be used.POSIX does not specify asa_restorer ele-
ment.

sa_handlerspecifies the action to be associated withsignumand may beSIG_DFL for the default action,
SIG_IGN to ignore this signal, or a pointer to a signal handling function.

sa_maskgives a mask of signals which should be blocked during execution of the signal handler. In addi-
tion, the signal which triggered the handler will be blocked, unless theSA_NODEFER or SA_NOMASK
flags are used.

sa_flagsspecifies a set of flags which modify the behaviour of the signal handling process. It is formed by
the bitwise OR of zero or more of the following:

SA_NOCLDSTOP
If signumis SIGCHLD , do not receive notification when child processes stop (i.e., when
child processes receive one ofSIGSTOP, SIGTSTP, SIGTTIN or SIGTTOU).

SA_RESTART
Provide behaviour compatible with BSD signal semantics by making certain system calls
restartable across signals.

RETURN VALUES
sigactionreturns 0 on success and -1 on error.

ERRORS
EINVAL

An invalid signal was specified.This will also be generated if an attempt is made to change the
action forSIGKILL or SIGSTOP, which cannot be caught.

SEE ALSO
kill (1), kill (2), killpg (2), pause(2), sigsetops(3),

SP-Klausur Manual-Auszug 2010-04-09 1

sigsuspend/sigprocmask(2) sigsuspend/sigprocmask(2)

NAME
sigprocmask − change and/or examine caller’s signal mask
sigsuspend − install a signal mask and suspend caller until signal

SYNOPSIS
#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

int sigsuspend(const sigset_t *set);

DESCRIPTION sigprocmask
The sigprocmask() function is used to examine and/or change the caller’s signal mask. If the value is
SIG_BLOCK , the set pointed to by the argumentset is added to the current signal mask.If the value is
SIG_UNBLOCK , the set pointed by the argumentsetis removed from the current signal mask.If the value
is SIG_SETMASK, the current signal mask is replaced by the set pointed to by the argumentset. If the
argumentosetis notNULL , the previous mask is stored in the space pointed to byoset. If the value of the
argumentset is NULL , the valuehow is not significant and the caller’s signal mask is unchanged; thus, the
call can be used to inquire about currently blocked signals.

If there are any pending unblocked signals after the call tosigprocmask(), at least one of those signals will
be delivered before the call tosigprocmask()returns.

It is not possible to block those signals that cannot be ignored this restriction is silently imposed by the sys-
tem. Seesigaction(2).

If sigprocmask()fails, the caller’s signal mask is not changed.

RETURN VALUES
On success,sigprocmask()returns0. On failure, it returns−1 and setserrno to indicate the error.

ERRORS
sigprocmask()fails if any of the following is true:

EFAULT setor osetpoints to an illegal address.

EINVAL The value of thehowargument is not equal to one of the defined values.

DESCRIPTION sigsuspend
sigsuspend()replaces the caller’s signal mask with the set of signals pointed to by the argumentsetand
then suspends the caller until delivery of a signal whose action is either to execute a signal catching func-
tion or to terminate the process.

If the action is to terminate the process,sigsuspend()does not return.If the action is to execute a signal
catching function,sigsuspend()returns after the signal catching function returns.On return, the signal
mask is restored to the set that existed before the call tosigsuspend().

It is not possible to block those signals that cannot be ignored (seesignal(5)); this restriction is silently
imposed by the system.

RETURN VALUES
Sincesigsuspend()suspends process execution indefinitely, there is no successful completion return value.
On failure, it returns −1 and setserrno to indicate the error.

ERRORS
sigsuspend()fails if either of the following is true:

EFAULT setpoints to an illegal address.

EINTR A signal is caught by the calling process and control is returned from the signal catching
function.

SEE ALSO
sigaction(2), sigsetops(3C),

SP-Klausur Manual-Auszug 2010-04-09 1

sigsetops(3C) sigsetops(3C)

NAME
sigsetops, sigemptyset, sigfillset, sigaddset, sigdelset, sigismember − manipulate sets of signals

SYNOPSIS
#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signo);

int sigdelset(sigset_t *set, int signo);

int sigismember(sigset_t *set, int signo);

DESCRIPTION
These functions manipulatesigset_tdata types, representing the set of signals supported by the implemen-
tation.

sigemptyset()initializes the set pointed to bysetto exclude all signals defined by the system.

sigfillset() initializes the set pointed to bysetto include all signals defined by the system.

sigaddset()adds the individual signal specified by the value ofsignoto the set pointed to byset.

sigdelset()deletes the individual signal specified by the value ofsignofrom the set pointed to byset.

sigismember()checks whether the signal specified by the value ofsignois a member of the set pointed to
by set.

Any object of typesigset_tmust be initialized by applying eithersigemptyset()or sigfillset() before
applying any other operation.

RETURN VALUES
Upon successful completion, thesigismember()function returns a value of one if the specified signal is a
member of the specified set, or a value of 0 if it is not. Upon successful completion, the other functions
return a value of 0. Otherwise a value of −1 is returned anderrno is set to indicate the error.

ERRORS
sigaddset(), sigdelset(), andsigismember()will f ail if the following is true:

EINVAL The value of thesignoargument is not a valid signal number.

sigfillset()will f ail if the following is true:

EFAULT Thesetargument specifies an invalid address.

SEE ALSO
sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2), attrib utes(5), signal(5)

SP-Klausur Manual-Auszug 2010-04-09 1

socket(3) socket(3)

NAME
socket − create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
socket() creates an endpoint for communication and returns a descriptor.

The domainparameter specifies a communications domain within which communication will take place;
this selects the protocol family which should be used.The protocol family generally is the same as the
address family for the addresses supplied in later operations on the socket. Thecurrently understood for-
mats are:

PF_INET ARPA Internet protocols

The socket has the indicatedtype, which specifies the communication semantics.Currently defined types
are:

SOCK_STREAM
SOCK_DGRAM

A SOCK_STREAM type provides sequenced, reliable, two-way connection-based byte streams.An out-of-
band data transmission mechanism may be supported.A SOCK_DGRAM socket supports datagrams (con-
nectionless, unreliable messages of a fixed (typically small) maximum length).

protocolspecifies a particular protocol to be used with the socket. Normallyonly a single protocol exists to
support a particular socket type within a given protocol family. Howev er, multiple protocols may exist, in
which case a particular protocol must be specified in this manner. The protocol number to use is particular
to the “communication domain” in which communication is to take place. Ifa protocol is specified by the
caller, then it will be packaged into a socket level option request and sent to the underlying protocol layers.

Sockets of typeSOCK_STREAM are full-duplex byte streams, similar to pipes.A stream socket must be in
a connectedstate before any data may be sent or received on it. A connection to another socket is created
with a connect(3N) call. Once connected, data may be transferred usingread(2) andwrite (2) calls or
some variant of thesend(3N) andrecv(3N) calls. When a session has been completed, aclose(2) may be
performed. Out-of-banddata may also be transmitted as described on thesend(3N) manual page and
received as described on therecv(3N) manual page.

The communications protocols used to implement aSOCK_STREAM insure that data is not lost or dupli-
cated. Ifa piece of data for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection is considered broken and calls will indicate an error
with −1 returns and withETIMEDOUT as the specific code in the global variableerrno. A SIGPIPE signal
is raised if a process sends on a broken stream; this causes naive processes, which do not handle the signal,
to exit.

RETURN VALUES
A −1 is returned if an error occurs.Otherwise the return value is a descriptor referencing the socket.

ERRORS
Thesocket() call fails if:

EACCES Permission to create a socket of the specified type and/or protocol is denied.

ENOMEM Insufficient user memory is available.

SEE ALSO
close(2), read(2), write (2), accept(3N), bind(3N), connect(3N), listen(3N),

SP-Klausur Manual-Auszug 2010-04-09 1

STAT(2) STAT(2)

NAME
stat, fstat, lstat − get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char *path, struct stat * buf);
int fstat(int fd, struct stat * buf);
int lstat(const char *path, struct stat * buf);

Feature Test Macro Requirements for glibc (seefeature_test_macros(7)):

lstat(): _BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
These functions return information about a file.No permissions are required on the file itself, but — in the
case ofstat() andlstat() — execute (search) permission is required on all of the directories inpath that lead
to the file.

stat() stats the file pointed to bypathand fills inbuf .

lstat() is identical tostat(), except that ifpath is a symbolic link, then the link itself is stat-ed, not the file
that it refers to.

fstat() is identical tostat(), except that the file to be stat-ed is specified by the file descriptorfd.

All of these system calls return astatstructure, which contains the following fields:

struct stat {
dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /*inode number */
mode_t st_mode; /*protection */
nlink_t st_nlink; /*number of hard links */
uid_t st_uid; /*user ID of owner */
gid_t st_gid; /*group ID of owner */
dev_t st_rdev; /* device ID (if special file) */
off_t st_size; /* total size, in bytes */
blksize_t st_blksize; /* blocksize for file system I/O */
blkcnt_t st_blocks; /*number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

};

Thest_dev field describes the device on which this file resides.

Thest_rdev field describes the device that this file (inode) represents.

The st_sizefield gives the size of the file (if it is a regular file or a symbolic link) in bytes.The size of a
symlink is the length of the pathname it contains, without a trailing null byte.

The st_blocks field indicates the number of blocks allocated to the file, 512-byte units.(This may be
smaller thanst_size/512 when the file has holes.)

Thest_blksizefield gives the "preferred" blocksize for efficient file system I/O.(Writing to a file in smaller
chunks may cause an inefficient read-modify-rewrite.)

SP-Klausur Manual-Auszug 2010-04-09 1

STAT(2) STAT(2)

Not all of the Linux file systems implement all of the time fields.Some file system types allow mounting in
such a way that file accesses do not cause an update of thest_atimefield. (See"noatime" inmount(8).)

The fieldst_atimeis changed by file accesses, for example, byexecve(2), mknod(2), pipe(2), utime(2) and
read(2) (of more than zero bytes).Other routines, likemmap(2), may or may not updatest_atime.

The fieldst_mtimeis changed by file modifications, for example, bymknod(2), truncate(2), utime(2) and
write (2) (of more than zero bytes).Moreover, st_mtimeof a directory is changed by the creation or dele-
tion of files in that directory. The st_mtimefield is not changed for changes in owner, group, hard link
count, or mode.

The fieldst_ctimeis changed by writing or by setting inode information (i.e., owner, group, link count,
mode, etc.).

The following POSIX macros are defined to check the file type using thest_modefield:

S_ISREG(m) is it a regular file?

S_ISDIR(m) directory?

S_ISCHR(m) characterdevice?

S_ISBLK(m) blockdevice?

S_ISFIFO(m) FIFO(named pipe)?

S_ISLNK(m) symboliclink? (Not in POSIX.1-1996.)

S_ISSOCK(m) socket? (Not in POSIX.1-1996.)

RETURN VALUE
On success, zero is returned.On error, −1 is returned, anderrno is set appropriately.

ERRORS
EACCES

Search permission is denied for one of the directories in the path prefix ofpath. (See also
path_resolution(7).)

EBADF
fd is bad.

EFAULT
Bad address.

ELOOP
Too many symbolic links encountered while traversing the path.

ENAMET OOLONG
File name too long.

ENOENT
A component of the pathpathdoes not exist, or the path is an empty string.

ENOMEM
Out of memory (i.e., kernel memory).

ENOTDIR
A component of the path is not a directory.

SEE ALSO
access(2), chmod(2), chown(2), fstatat(2), readlink (2), utime(2), capabilities(7), symlink(7)

SP-Klausur Manual-Auszug 2010-04-09 2

waitpid(2) waitpid(2)

NAME
waitpid − wait for child process to change state

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int * stat_loc, int options);

DESCRIPTION
waitpid() suspends the calling process until one of its children changes state; if a child process changed
state prior to the call towaitpid(), return is immediate.pid specifies a set of child processes for which sta-
tus is requested.

If pid is equal to(pid_t)−1, status is requested for any child process.

If pid is greater than(pid_t)0, it specifies the processID of the child process for which status is
requested.

If pid is equal to(pid_t)0 status is requested for any child process whose process groupID is equal
to that of the calling process.

If pid is less than(pid_t)−1, status is requested for any child process whose process groupID is
equal to the absolute value ofpid.

If waitpid() returns because the status of a child process is available, then that status may be evaluated with
the macros defined bywstat(5). If the calling process had specified a non-zero value ofstat_loc, the status
of the child process will be stored in the location pointed to bystat_loc.

The optionsargument is constructed from the bitwise inclusive OR of zero or more of the following flags,
defined in the header<sys/wait.h>:

WCONTINUED The status of any continued child process specified bypid, whose status has not
been reported since it continued, is also reported to the calling process.

WNOHANG waitpid() will not suspend execution of the calling process if status is not imme-
diately available for one of the child processes specified bypid.

WNOWAIT Keep the process whose status is returned instat_locin a waitable state. The pro-
cess may be waited for again with identical results.

RETURN VALUES
If waitpid() returns because the status of a child process is available, this function returns a value equal to
the processID of the child process for which status is reported.If waitpid() returns due to the delivery of a
signal to the calling process,−1 is returned anderrno is set toEINTR . If this function was invoked with
WNOHANG set inoptions, it has at least one child process specified bypid for which status is not available,
and status is not available for any process specified bypid, 0 is returned.Otherwise,−1 is returned, and
errno is set to indicate the error.

ERRORS
waitpid() will f ail if one or more of the following is true:

ECHILD The process or process group specified bypid does not exist or is not a child of the call-
ing process or can never be in the states specified byoptions.

EINTR waitpid() was interrupted due to the receipt of a signal sent by the calling process.

EINVAL An invalid value was specified foroptions.

SEE ALSO
exec(2), exit(2), fork (2), sigaction(2), wstat(5)

SP-Klausur Manual-Auszug 2010-04-09 1

