accept(3) accept(3)

NAME

accept — accept a connection on a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, sruct sockaddr *addr, int * addrler);

DESCRIPTION

The aguments is a socket that has been created wiibke(3N) and bound to an address witimd (3N),

and that is listening for connections after a calls®n(3N). Theaccept()function extracts the first con-
nection on the queue of pending connections, creates aocket with the properties of and allocates a

new file descriptarns, for the sockt. If no pending connections are present on the queue and the socket is
not marked as non-blockingccept() blocks the caller until a connection is present. If the socket is
marked as non-blocking and no pending connections are present on theapoepd( )returns an error as
described belo. The accept()function uses theetconfig4) file to determine th6 TREAMS device file

name associated with This is the device on which the connect indication will be accepted. The accepted
socket,ns, is used to read and write data to and from the socket that connectgdt ie not used to accept
more connections. The original sockgtremains open for accepting further connections.

The agumentaddr is a result parameter that is filled in with the address of the connecting entity as it is
known to the communications layeThe exact format of thaddr parameter is determined by the domain
in which the communication occurs.

The agumentaddrlenis a \alue-result parameteinitially, it contains the amount of space pointed to by
addr; on return it contains the length in bytes of the address returned.

Theaccept()function is used with connection-based socket types, currenthS®IEK_STREAM.

It is possible taselec{3C) orpoll(2) a sockt for the purpose of aaccept()by selecting or polling it for a
read. Hovever, this will only indicate when a connect indication is pending; it is still necessary to call
accept()

RETURN VALUES

Theaccept()function returns-1 on error If it succeeds, it returns a nongave integer that is a descrip-
tor for the accepted socket.

ERRORS

accept()will fail if:

EBADF The descriptor is walid.

EINTR The accept attempt was interrupted by thevesliof a signal.

EMFILE The per-process descriptor table is full.

ENODEV The protocol &mily and type corresponding $@ould not be found in theetcon-
fig file.

ENOMEM There was insufficient user memomgidable to complete the operation.

EPROTO A protocol error has occurred; for example, 8'REAMS protocol stack has not

been initialized or the connection has already been released.

EWOULDBLOCK The socket is marked as non-blocking and no connections are present to be

accepted.

SEE ALSO

poll(2), bind(3N), connec{3N), listen(3N), selec{3C), socke{3N), netconfig4), attributes(5), socke(5)

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1

bind(3) bind(3)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int bind(int s, const struct sockaddr *name int nameleiy;

DESCRIPTION
bind() assigns a name to an unnamed sbckVhera ocket is created witlBocke(3N), it exists in a name
space (address family) but has no name assighiedl() requests that the name pointed toriamebe
assigned to the socket.

RETURN VALUES
If the bind is successful is returned.A return \alue of-1 indicates an errowhich is further specified in
the globalerrno.

ERRORS
Thebind() call will fail if:

EACCES The requested address is protected and the current user has inadequate permission
to access it.
EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is nosidable on the local machine.

EBADF sis not a valid descriptor.

EINVAL nameleris not the size of a valid address for the specified address family.
EINVAL The socket is already bound to an address.

ENOSR There were insufficier@TREAMSresources for the operation to complete.
ENOTSOCK sis a descriptor for a file, not a socket.

The following errors are specific to binding names intN& domain:

EACCES Search permission is denied for a component of the path prefix of the pathname in
name
EIO An 1/O error occurred while making the directory entry or allocating the inode.
EISDIR A null pathname was specified.
ELOOP Too mary symbolic links were encountered in translating the pathnamarime
ENOENT A component of the path prefix of the pathnamaamedoes not exist.
ENOTDIR A component of the path prefix of the pathnameameis not a directory.
EROFS The inode would reside on a read-only file system.
SEE ALSO

unlink (2), socke(3N), attributes(5), socke(5)
NOTES

Binding a name in the&NIX domain creates a socket in the file system that must be deleted by the caller

when it is no longer needed (usiaglink (2)).

The rules used in name binding vary between communication domains.

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1



opendir/readdir(3) opendir/readdir(3)

NAME
opendir — open a directory / readdir — read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>
DIR *opendir(const char *name;

struct dirent *readdir(DIR * dir);
int readdir_r(DIR * dirp, struct dirent * entry, struct dirent ** result);

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the direcéong and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to lajr. It returns NULL on reaching the end-of-file or if an error occurred.

DESCRIPTION readdir_r
Thereaddir_r() function initializes the structure referenced égtry and storesa pointer to this structure
in result On successful return, the pointer returnedrasult will have the samevalue as the agument
entry. Upon reaching the end of the directory stream, this pointer wid the value NULL.

The data returned byeaddir() is overwritten by subsequent calls teaddir() for the same directory
stream.

Thedirentstructure is defined as follows:

struct dirent {

long d_ino; /* inode number */

off_t d_of; /* offset to the next dirent */
unsigned short_reclen; /Mength of this record */
unsigned chard_type; [*type of file */

char d_name[256]; /* filename */

h
RETURN VALUE
Thereaddir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.
readdir_r() returns Qf successful or an error number to indicate failure.

ERRORS
EACCES
Permission denied.

ENOENT
Directory does not exist, orameis an empty string.

ENOTDIR
nameis not a directory.

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1

fopen/fdopen(3) fopen/fdopen(3)

NAME
fopen, fdopen - stream open functions

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * path, const char *mods);
FILE *fdopen(int fildes const char *mode);

DESCRIPTION
Thefopen function opens the file whose name is the string pointed patfyand associates a stream with
it.

The agumentmodepoints to a string wnning with one of the following sequences (Additional characters
may follov these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.

r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned agieirg
of the file.

w+ Open for reading and writing. The file is created if it does rist,eotherwise it is truncatedlhe

stream is positioned at the beginning of the file.

a Open for appending (writing at end of fileJhe file is created if it does natist. Thestream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it doegistot e
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descrifittes The modeof the stream
(one of the alues "r", "r+", "w", "w+", "a", "a+") must be compatible with the mode of the file descriptor
The file position indicator of the nestream is set to that belongingfitdles and the error and end-of-file
indicators are clearedMlodes "w" or "w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream createfddpenis closed. The result of applyifidopento a

shared memory object is undefined.

RETURN VALUE
Upon successful completiofopen, fdopen and freopen return aFILE pointer Otherwise,NULL is
returned and the global variatdernois set to indicate the error.

ERRORS
EINVAL
Themodeprovided tofopen, fdopen, or freopenwas invdid.

Thefopen, fdopen andfreopen functions may also fail and setrno for ary of the errors specified for the
routinemalloc(3).

Thefopenfunction may also fail and setrnofor ary of the errors specified for the routiopen(2).
Thefdopenfunction may also fail and setrnofor ary of the errors specified for the routifentl (2).

SEE ALSO
open(2), fclosg3), fileno(3)

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1



getc/fgets(3) getc/fgets(3)

NAME

fgetc, fgets, getc, getchaets, ungetc - input of characters and strings
SYNOPSIS

#include <stdio.h>

int fgetc(FILE * strean);

char *fgets(char *s, int size FILE * strean);

int getc(FILE * strean);

int getchar(void);

char *gets(char *s);

int ungetc(int c, FILE * strean);
DESCRIPTION

fgeto() reads the next character frastieamand returns it as amnsigned bar cast to arint, or EOF on
end of file or error.

getq) is equvalent tofgetc() except that it may be implemented as a macro whiglu@esstreammore
than once.

getchar() is equvalent togetc(stdin).

getq) reads a line fronstdin into the luffer pointed to bys until either a terminating newline &OF,
which it replaces with0’. No check for buffer @errun is performed (seBUGS below).

fgety) reads in at most one less tterecharacters fronstreamand stores them into theiffer pointed to
by s. Reading stops after dBOF or a nevline. If a rewline is read, it is stored into thelffer. A "\0’ is
stored after the last character in the buffer.

ungetq) pushesc back tostream cast tounsigned bar, where it is &ailable for subsequent read opera-
tions. Pushed-badtharacters will be returned inveese order; only one pushback is guaranteed.

Calls to the functions described here can beethixith each other and with calls to other input functions
from thestdiolibrary for the same input stream.

For non-locking counterparts, se@locked_stdiq3).

RETURN VALUE

fgetd(), getd) andgetchar() return the character read aswasigned bar cast to annt or EOF on end of
file or error.

getq) andfgety) returns on success, and NULL on error or when end of file occurs while no characters
have been read.

ungetq) returnsc on success, dEOF on error.

CONFORMING TO

C89, C99. LSB deprecatgsty).

BUGS
Never usegety). Becausdt is impossible to tell without knowing the data in adee ha mary characters
getq) will read, and becausgety) will continue to store characters past the end of thféelh it is
extremely dangerous to use. It has been used to break computer sddseityets) instead.
It is not advisable to mix calls to input functions from sheio library with low-level calls toread(2) for
the file descriptor associated with the input stream; the results will be undefined and very probably not what
you want.

SEE ALSO
read(2), write (2), ferror (3), fgetwc(3), fgetws3), fopen(3), fread(3), fseek3), getline(3), getwchar(3),
puts(3), scan{3), ungetwq3), unlocked_stdid3)

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1

in(7)

ip — Linux IPv4 protocol implementation

SYNOPSIS

#include <sys/socket.h>
#include <netinet/in.h>

tcp_soket = socket(PF_INET, SOCK_STREAM, 0);
raw_soket = socket(PF_INET, SOCK_RAW, protocol);
udp_soket = socket(PF_INET, SOCK_DGRAM, protocol);

DESCRIPTION

The programmes’ interface is BSD sockets compatibleor more information on sockets, ssecke(7).

An IP socket is created by calling teecke(2) function assocket(PF_INET, socket_type, protocol).
Valid socket types ar&OCK_STREAM to open atcp(7) soclet, SOCK_DGRAM to open audp(7)
soclet, orSOCK_RAW to open aaw(7) socket to access the IP protocol direcfiyotocolis the IP proto-
col in the IP header to be reead or £nt. Theonly valid values foprotocol are0 andIPPROTO_TCP
for TCP sockets andandIPPROTO_UDP for UDP sockets.

When a process wants to ra@irew incoming packets or connections, it should bind a socket to a local
interface address usirgind(2). Onlyone IP sockt may be bound to grgiven local (address, port) pair
WhenINADDR_ANY is specified in the bind call the socket will be boun@ltdocal interfaces. When
listen(2) or connec(2) are called on a unbound socket the socket is automatically bound to a random free
port with the local address setitdADDR_ANY .

ADDRESS FORMAT

An IP socket address is defined as a combination of an IP interface address and a parTharbbsic IP
protocol does not supply port numbersytae implemented by highende protocols liketcp(7).

struct sockaddr_in {
sa_bamily_t sin_amily;  /* address family: AF_INET */
u_intl6_t sin_port; /* port in network byte order */
struct in_addrsin_addr; [Yinternet address */
I
/* Internet address. */
struct in_addr {
u_int32_t s_addr; /* address in network byte order */
b
sin_familyis aways set toAF_INET. This is required; in Linux 2.2 most networking functions return
EINVAL when this setting is missingin_portcontains the port in network byte ord&he port numbers
belov 1024 are called reserved ports Only processes with fefctive wser id 0 or the
CAP_NET_BIND_SERVICE capability maybind(2) to these sockets.

sin_addris the IP host addres3he addr member ofstruct in_addr contains the host interface address in
network order in_addr should be only accessed using itet_aton(3), inet_addr(3), inet_makeaddr(3)
library functions or directly with the name resolver (gethostbynamé3)).

Note that the address and the port aveags stored in network orderdn particular this means that you
need to calhtons(3) on the number that is assigned to a port. All address/port manipulation functions in
the standard library work in network order.

SEE ALSO

sendmsg@?2), recvmsg2), socke(7), netlink (7), tcp(7), udp(7), raw(7), ipfw (7)

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1



pthread_cond(3) pthread_cond(3)

pthread_cond_init, pthread_cond_degtro  pthread_cond_signal, pthread_cond_broadcast,
pthread_cond_wait, pthread_cond_timedwait — operations on conditions

SYNOPSIS

#include <pthread.h>

pthread_cond_tcond= PTHREAD_COND_INITIALIZER;

int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_atty);
int pthread_cond_signal(pthread_cond_t tond);

int pthread_cond_broadcast(pthread_cond_t tond);

int pthread_cond_wait(pthread_cond_t *tond, pthread_mutex_t *mutey;

int pthr ead_cond_timedwait(pthread_cond_t tond, pthread_mutex_t *mutex const struct timespec
*abstime;

int pthread_cond_destroy(pthread_cond_t tond);

DESCRIPTION

A condition (short for “condition &riable’) is a synchronization device that alle threads to suspend
execution and relinquish the processors until some predicate on shared data is satisfied. The basic opera-
tions on conditions are: signal the condition (when the predicate becomes truejitaiod thie condition,
suspending the threadeeution until another thread signals the condition.

A condition variable must alays be associated with a mutex, tmid the race condition where a thread
prepares to wait on a conditioaniable and another thread signals the condition just before the first thread
actually waits on it.

pthread_cond_init initializes the condition ariable cond, using the condition attributes specified in
cond_attr, or default attributes ifcond_attris NULL. The LinuxThreads implementation supports no
attributes for conditions, hence tbend_attrparameter is actually ignored.

Variables of type pthread_cond_t can also be initialized statically using the constant
PTHREAD_COND_INITIALIZER .

pthread_cond_signalrestarts one of the threads that are waiting on the condi@inable cond If no
threads are waiting onond, nothing happens. If seral threads are waiting ocond, exactly one is
restarted, but it is not specified which.

pthread_cond_broadcastrestarts all the threads that are waiting on the conditiabecond Nothing
happens if no threads are waitingamnd

pthread_cond_waitatomically unlocks thenutex(as pemthread_unlock_mutex) and waits for the con-
dition variablecondto be signaled. The threageeution is suspended and does not consume€R time
until the condition variable is signaled. Theutexmust be locked by the calling thread on entrance to
pthread_cond_wait Before returning to the calling thregathread_cond_waitre-acquiresnutex(as per
pthread_lock_mutex).

Unlocking the mute and suspending on the condition variable is done atomictifiys, if all threads
always acquire the muxebefore signaling the condition, this guarantees that the condition cannot be

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1

pthread_cond(3) pthread_cond(3)

signaled (and thus ignored) between the time a thread locks the andtthe time it aits on the condition
variable.

pthread_cond_timedwaitatomically unlocksnutexand waits orcond, as pthread_cond_waitdoes, but it
also bounds the duration of the waitctindhas not been signaled within the amount of time specified by
abstime the mute mutexis re-acquired angthread_cond_timedwait returns the erroETIMEDOUT .
Theabstimeparameter specifies an absolute time, with the same origime®) andgettimeofday(2): an
abstimeof 0 corresponds to 00:00:00 GMJanuary 1, 1970.

pthread_cond_destroydestrgs a condition variable, freeing the resources it might hold. No threads must
be waiting on the condition variable on entranceptbread_cond_destroy In the LinuxThreads imple-
mentation, no resources are associated with condition variablegtitihead_cond_destroyactually does
nothing except checking that the condition has no waiting threads.

CANCELLATION
pthread_cond_wait and pthread_cond_timedwait are cancellation points. If a thread is cancelled while
suspended in one of these functions, the thread immediately resxenesom, then locks again theutex
argument topthread_cond_wait and pthread_cond_timedwait and finally executes the cancellation.
Consequentlycleanup handlers are assured thatexis locked when theare called.

ASYNC-SIGNAL SAFETY
The condition functions are not async-signal safe, and should not be called from a signal Inguedtés-
ular, calling pthread_cond_signalor pthread_cond_broadcastfrom a signal handler may deadlock the
calling thread.

RETURN VALUE
All condition variable functions return 0 on success and a non-zero error code on error.

ERRORS
pthread_cond_init, pthread_cond_signal pthread_cond_broadcast and pthread_cond_wait never
return an error code.

Thepthread_cond_timedwaitfunction returns the following error codes on error:

ETIMEDOUT
the condition variable was not signaled until the timeout specifiedb&iyme

EINTR
pthread_cond_timedwaitwas interrupted by a signal

Thepthread_cond_destroyfunction returns the following error code on error:

EBUSY
some threads are currently waitingamd

AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_condattr_init(3), pthread_mutex_lock3), pthread_mutex_unlock3), gettimeofday2),
nanosleef§2).

SP/SOS1-Klausur Manual-Auszug 2009-03-27 2



pthread_create/pthreadit€3) pthread_create/pthreadit¢3)

NAME
pthread_create - create awhiread / pthread_exit — terminate the calling thread
SYNOPSIS
#include <pthread.h>
int pthr ead_create(pthead_t * thread, pthread_attr_t * attr, void * (* start_routing(void *), void *
arg);
void pthread_exit(void *retval);
DESCRIPTION

pthread_createcreates a e thread of control thatecutes concurrently with the calling thread. The/ne
thread applies the functiastart_routinepassing itarg as first agument. The ne thread terminates either
explicitly, by calling pthread_exit(3), or implicitly, by returning from thestart_routinefunction. The latter
case is equalent to callingpthread_exit(3) with the result returned tstart_routineas exit code.

Theattr agument specifies thread atuiibs to be applied to thewméhread. Septhread_attr_init (3) for a
complete list of thread attributes. Tatr algument can also EULL , in which case default attributes are
used: the created thread is joinable (not detached) and has default (non real-time) schedyling polic

pthread_exit terminates thex@cution of the calling threadAll cleanup handlers that b keen set for the
calling thread withpthread_cleanup_puslf3) are eecuted in rgerse order (the most recently pushed han-
dler is executed first). Finalization functions for thread-specific data are then called fayalthat hae
non- NULL values associated with them in the calling thread (stbeead_key_creaté3)). Finally,
execution of the calling thread is stopped.

The retval agument is the return value of the thread. It can be consulted from another thread using
pthread_join(3).

RETURN VALUE
On success, the identifier of thewhe created thread is stored in the location pointed bytttheadargu-
ment, and a 0 is returned. On er@ron-zero error code is returned.

Thepthread_exit function neer returns.

ERRORS
EAGAIN
not enough system resources to create a process fowttieread.

EAGAIN
more tharPTHREAD_THREADS_MAX threads are already aadi

AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_join(3), pthread_detach(3), pthread_attr_init (3).

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1

pthread_mute(3) pthread_mutg3)

NAME
pthread_mute init, pthread_mutex_lock, pthread_mutex_trylock, pthread xmutdock,
pthread_mutex_destyoe- operations on muges

SYNOPSIS
#include <pthread.h>

pthread_mutex_t fastmutexs PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_trecmutex= PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
pthread_mutex_t errchkmutex= PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
int pthread_mutex_init(pthread_mutex_t *mutex const pthread_mutexattr_t *mutexatt);
int pthread_mutex_lock(pthread_mutex_t *mutey;

int pthread_mutex_trylock(pthread_mutex_t *mutey;

int pthread_mutex_unlock(pthread_mutex_t *mutey;

int pthread_mutex_destroy(pthread_mutex_t ‘mutey;

DESCRIPTION
A mutex is a MUTual EXclusion device, and is useful for protecting shared data structures from concurrent
modifications, and implementing critical sections and monitors.

A mutex has two possible states: unlocked (not owned by #imead), and locked (owned by one thread). A
mutex can n&er be avned by tvo dfferent threads simultaneousk thread attempting to lock a mute
that is already locked by another thread is suspended until the owning thread unlocksxHigsnute

pthread_mutex_init initializes the mute object pointed to bymutexaccording to the mukeattributes
specified ifmutexattr If mutexattris NULL , default attributes are used instead.

The LinuxThreads implementation supports only one matgibutes, themutex kind, which is either
“fast”, ‘‘recursive”, or “error checking”. The kind of a mutedetermines whether it can be lockedhiag
by a thread that already owns it. The default kindfést”. See pthread_mutexattr_init (3) for more
information on mute attributes.

Variables of type pthread_mutex_t can also be initialized staticallyusing the constants
PTHREAD_MUTEX_INITIALIZER  (for fast mutees), PTHREAD_RECURSIVE_MUTEX_INI-
TIALIZER_NP (for recursie nutexes), and PTHREAD_ERRORCHECK_MUTEX_INITIAL-
IZER_NP (for error checking muses).

pthread_mutex_lock locks the gien mutex. If the mute is currently unlocked, it becomes locked and
owned by the calling thread, apthread_mutex_lockreturns immediatelylif the mute is dready locled
by another threaghthread_mutex_locksuspends the calling thread until the mugeunlocked.

If the mutex is dready locked by the calling thread, the bebrof pthread_mutex_lock depends on the
kind of the mutex. If the muteis of the ‘fast” kind, the calling thread is suspended until the mige
unlocked, thus déctively causing the calling thread to deadlock. If the museof the “error checking’
kind, pthread_mutex_lock returns immediately with the error co®EADLK . If the mute is of the
“recursve” kind, pthread_mutex_lock succeeds and returns immediategcording the number of times
the calling thread has locked the mutex. An equal numbpthoéad_mutex_unlock operations must be

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1



pthread_mute(3) pthread_mutg3)

performed before the muteeturns to the unlocked state.

pthread_mutex_trylock behaes identically topthread_mutex_lock except that it does not block the
calling thread if the muteis dready locked by another thread (or by the calling thread in the case of a
“fast” mutex). Insteadpthread_mutex_trylock returns immediately with the error coHBUSY.

pthread_mutex_unlock unlocks the gien mutex. The mut& is assumed to be locked and owned by the
calling thread on entrance tpthread_mutex_unlock If the muta is of the ‘fast” kind,
pthread_mutex_unlock always returns it to the unlocked state. If it is of thecursive” kind, it decre-
ments the locking count of the mutéhumber ofpthread_mutex_lock operations performed on it by the
calling thread), and only when this count reaches zero is theamitelly unlocked.

On “error checking’ mutexes, pthread_mutex_unlock actually checks at run-time that the muis
locked on entrance, and that it was locked by the same thread that ¢slfiog pthread_mutex_unlock
If these conditions are not met, an error code is returned and the maotains unchanged: Fast” and
“recursve” mutexes perform no such checks, thus allowing a locked mutebe wlocked by a thread
other than its ownefThis is non-portable behavior and must not be relied upon.

pthread_mutex_destroydestrgs a mut& object, freeing the resources it might hold. The mutest be
unlocked on entrance. In the LinuxThreads implementation, no resources are associated witijextte
thuspthread_mutex_destroyactually does nothing except checking that the risgtenlocked.

RETURN VALUE
pthread_mutex_init always returns 0. The other mutéunctions return 0 on success and a non-zero error
code on error.

ERRORS
Thepthread_mutex_lockfunction returns the following error code on error:

EINVAL
the mute has not been properly initialized.

EDEADLK
the mute is dready locked by the calling thread (“error checkimgutexes anly).

Thepthread_mutex_unlockfunction returns the following error code on error:

EINVAL
the mute has not been properly initialized.

EPERM
the calling thread does not own the mxuteerror checking’mutexes anly).

Thepthread_mutex_destroyfunction returns the following error code on error:

EBUSY
the mute is currently locked.

AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_mutexattr_init (3), pthread_mutexattr_setkind_np(3), pthread_cance(3).

SP/SOS1-Klausur Manual-Auszug 2009-03-27 2

soclet(3) sockt(3)

NAME
socket — create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain int type, int protocol);

DESCRIPTION
soclet() creates an endpoint for communication and returns a descriptor.

The domainparameter specifies a communications domain within which communication veilpte;

this selects the protocol family which should be used. The protocol family generally is the same as the
addressdmily for the addresses supplied in later operations on thetso€kecurrently understood fer

mats are:

PF_INET ARPAInternet protocols

The sockt has the indicatetype which specifies the communication semantics. Currently defined types
are:

SOCK_STREAM
SOCK_DGRAM

A SOCK_STREAM type provides sequenced, reliableptway connection-based byte streams. An out-of-
band data transmission mechanism may be suppote&3bCK_DGRAM soclet supports datagrams (con-
nectionless, unreliable messages of a fixed (typically small) maximum length).

protocol specifies a particular protocol to be used with theetoddormallyonly a single protocol exists to
support a particular socket type within aegi protocol family. Howeve, multiple protocols may exist, in
which case a particular protocol must be specified in this maiiherprotocol number to use is particular
to the “communication domain” in which communication is tcetglace. Ifa protocol is specified by the
caller, then it will be packaged into a socketdeoption request and sent to the underlying protocol layers.

Soclets of typeSOCK_STREAM are full-duplex byte streams, similar to pipe# stream socket must be in
aconnectedstate before gndata may be sent or reeed on it. A connection to another socket is created
with a connec(3N) call. Once connected, data may be transferred used(2) andwrite (2) calls or
some variant of theend3N) andrecv(3N) calls. When a session has been completetipsg2) may be
performed. Out-of-bandlata may also be transmitted as described ors¢ne(3N) manual page and
receved as escribed on theecv(3N) manual page.

The communications protocols used to impleme8D&K_STREAM insure that data is not lost or dupli-
cated. Ifa pece of data for which the peer protocol hagfdr space cannot be successfully transmitted
within a reasonable length of time, then the connection is considerezhtanH calls will indicate an error
with -1 returns and witETIMEDOUT as the specific code in the globaliableerrno. A SIGPIPE signal

is raised if a process sends on a broken stream; this cavsegrnaesses, which do not handle the signal,
to exit.

RETURN VALUES
A -1is returned if an error occurs. Otherwise the return value is a descriptor referencing the socket.

ERRORS
Thesoclet( ) call fails if:
EACCES Permission to create a setlof the specified type and/or protocol is denied.
EMFILE The per-process descriptor table is full.
ENOMEM Insufficient user memory isvalable.
SEE ALSO

closd2), read(2), write (2), accep(3N), bind (3N), connec(3N), listen(3N),

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1



