connect(2) connect(2) opendir/readdir(3) opendir/readdir(3)

NAME NAME

connect - initiate a connection on a socket opendir — open a directory / readdir - read a directory
SYNOPSIS SYNOPSIS

#include <sys/types.h> #include <sys/types.h>

#include <sys/socket.h>
#include <dirent.h>
int connect(int sockfd const struct sockaddr *serv_addr socklen_t addrlen);
DESCRIPTION DIR *opendir(const char *name;

The file descriptorsockfdmust refer to a soelt. If the sockt is of typeSOCK_DGRAM then the

serv_addraddress is the address to which datagrams are sent by default, and the only address from which struct dirent *readdir(DIR * dir);

datagrams are resed. If the socket is of typ§OCK_STREAM or SOCK_SEQRACKET, this call int readdir_r(DIR * dirp, struct dirent * entry, struct dirent ** result);
attempts to maka ®nnection to another soek Theother socket is specified lserv_addr which is an
address (of lengthddrlen) in the communications space of the sstckEachcommunications space inter DESCRIPTION opendir
prets theserv_addmparameter in its own way. Theopendir() function opens a directory stream corresponding to the direcéong and returns a pointer
Generally connection-based protocol sockets may successfatipectonly once; connectionless protocol to the directory stream. The stream is positioned at the first entry in the directory.
soclets may useonnectmultiple times to change their association. Connectionless sockets mayalissolv RETURN VALUE
the association by connecting to an address witegh&amilymember ofsockaddr set toAF_UNSPEC, Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.
RETURN VALUE DESCRIPTION readdir
If the connection or binding succeeds, zero is retur@uerror —1 is returned, an@rrnois set appropri- The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
ately. directory stream pointed to fojr. It returns NULL on reaching the end-of-file or if an error occurred.
ERRORS DESCRIPTION readdir_r

The following are general socket errors orfyiere may be other domain-specific error codes. Thereaddir_r() function initializes the structure referenced egtry and storesa pointer to this structure
EBADF in result On successful return, the pointer returned@sult will have the samevaue as the agument

The file descriptor is not a valid indé the descriptor table. entry. Upon reaching the end of the directory stream, this pointer widl & value NULL.
EFAULT The d d byeaddir() i i b b Il ddir() for th di

The socket structure address is outside thesiattess space. Strgamata returned bgeaddir() is overwritten by subsequent calls teaddir() for the same directory
ENOTSOCK Thedi . is defined as follows:

The file descriptor is not associated with a socket. edirentstructure is defined as follows:
EISCONN) struct dirent {

The socket is already connected. long d_ino; /* inode number */
ECONNREEUSED off_t d_of; /* offset to the next dirent */

No one listening on the remote address. unsigned shord_reclen; [Mength of this record */

unsigned chard_type; [*type of file */

ENETUNREACH_ char d_name[256]; /* filename */

Network is unreachable. ¥
EADDRIII\IUSIE dd is already i RETURN VALUE

ocal address Is already In use. Thereaddir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is

EAFNOSUPPORT reached.

The passed address ditiavethe correct address family in &a_familyfield. readdir_r() returns Qf successful or an error number to indicate failure.

EACCES, EPERM ERRORS
The user tried to connect to a broadcast address without having the socket broadcast flag enabled EACCES

or the connection request failed because of a localdireule. Permission denied.

ENOENT
Directory does not exist, orameis an empty string.

ENOTDIR
nameis not a directory.

SEE ALSO
accep(2), bind(2), listen(2), socke(2), getsocknamé2)

SOS1-Klausur Manual-Auszug 2007-03-15 1 SOS1-Klausur Manual-Auszug 2007-03-15 1

fopen/fdopen(3) fopen/fdopen(3)

NAME
fopen, fdopen - stream open functions

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * path, const char *mods);
FILE *fdopen(int fildes const char *mode);

DESCRIPTION
The fopen function opens the file whose name is the string pointed mathyand associates a stream with
it.

The agumentmodepoints to a string beginning with one of the fallng sequences (Additional characters
may follov these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.

r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned agieihg
of the file.

W+ Open for reading and writingThe file is created if it does not exist, otherwise it is truncatée
stream is positioned at the beginning of the file.

a Open for appending (writing at end of file). The file is created if it doesxigit €rhestream is
positioned at the end of the file.

a+t Open for reading and appending (writing at end of file). The file is created if it doegistot e
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descrifites The modeof the stream

(one of the glues "r", "r+", "w", "w+", "a", "a+") must be compatible with the mode of the file descriptor
The file position indicator of the nestream is set to that belongingfitsles and the error and end-of-file
indicators are cleared. Modes "w" or "w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream creatdddyyenis closed. The result of applyirfidopento a
shared memory object is undefined.

RETURN VALUE
Upon successful completiofopen, fdopen and freopen return aFILE pointer Otherwise, NULL is
returned and the global varialdernois set to indicate the error.

ERRORS
EINVAL
Themodeprovided tofopen, fdopen, or freopenwas invdid.

The fopen, fdopen andfreopen functions may also fail and setrno for ary of the errors specified for the
routinemalloc(3).

Thefopen function may also fail and setrno for ary of the errors specified for the routinpen(2).
Thefdopenfunction may also fail and setrno for ary of the errors specified for the routifentl (2).

SEE ALSO
open(2), fclosg3), fileno(3)

SOS1-Klausur Manual-Auszug 2007-03-15 1

gets(3) gets(3)

NAME
gets, fgets — get a string from a stream
fputs, puts - output of strings
SYNOPSIS
#include <stdio.h>

char *gets(char *s);

char *fgets(char *s, int n, FILE *strean);
int fputs(const char *s, FILE * strean);
int puts(const char *s);

DESCRIPTION gets/fgets
The gets()function reads characters from the standard input streanintse€3)), stdin, into the array
pointed to bys, until a navline character is read or an end-of-file condition is encountered. Tmae
character is discarded and the string is terminated with a null character.

The fgets()function reads characters from tsieeaminto the array pointed to bg; until n—1 characters
are read, or a newline character is read and transfersgpditan exd-of-file condition is encounteredhe
string is then terminated with a null character.

When usinggets() if the length of an input line exceeds the sizs, dfideterminate behavior may result.
For this reason, it is strongly recommended thets()be avoided in favar of fgets()

RETURN VALUES
If end-of-file is encountered and no charactereh®en read, no characters are transferresiaiod a null
pointer is returned. If a read error occurs, such as trying to use these functions on a file that has not been
opened for reading, a null pointer is returned and the error indicator for the stream is set. If end-of-file is
encountered, theOF indicator for the stream is set. Otherwssis returned.

ERRORS
Thegets()andfgets()functions will fail if data needs to be read and:

EOVERFLOW The file is a regular file and an attempt was made to read ayamd¢ehe offset maxi-
mum associated with the correspondstigam

DESCRIPTION puts/fputs
fputs() writes the strings to stream without its trailing"\0’ .

puts() writes the string and a trailing newline tetdout

Calls to the functions described here can beethixith each other and with calls to other output functions
from thestdio library for the same output stream.

RETURN VALUE
puts() andfputs() return a non - rgetive rumber on success, BOF on error.

SOS1-Klausur Manual-Auszug 2007-03-15 1

ip(7) ip(7)

NAME
ip — Linux IPv4 protocol implementation

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

tcp_soket = socket(PF_INET, SOCK_STREAM, 0);
raw_soket = socket(PF_INET, SOCK_RAW, protocol);
udp_soket = socket(PF_INET, SOCK_DGRAM, protocol);

DESCRIPTION
The programmes’interface is BSD sockets compatibleor more information on sockets, ssecke(7).

An IP socket is created by calling teecke(2) function assocket(PF_INET, socket_type, protocol).

Valid socket types ar&OCK_STREAM to open atcp(7) soclet, SOCK_DGRAM to open audp(7)

soclet, orSOCK_RAW to open aaw(7) socket to access the IP protocol direcfiyotocolis the IP proto-
col in the IP header to be reead or £nt. Theonly valid values foprotocol are0 andIPPROTO_TCP

for TCP sockets andandIPPROTO_UDP for UDP sockets.

When a process wants to raeirew incoming packets or connections, it should bind aeiotka local
interface address usirgnd(2). Onlyone IP sock&t may be bound to grmgiven local (address, port) pair
WhenINADDR_ANY is specified in the bind call the socket will be bounaltdocal interfaces. When
listen(2) or connec(2) are called on a unbound socket the socket is automatically bound to a random free
port with the local address setiMADDR_ANY .

ADDRESS FORMAT
An IP socket address is defined as a combination of an IP interface address and a parTherbbesic IP
protocol does not supply port numbersythee implemented by highendel protocols liketcp(7).

struct sockaddr_in {
sa_fmily_t sin_tmily; /* address family: AF_INET */
u_intl6_t sin_port; /* port in network byte order */
struct in_addrsin_addr; [finternet address */
h
/* Internet address. */
struct in_addr {
u_int32_t s_addr; /* address in network byte order */
h
sin_familyis aways set toAF_INET. This is required; in Linux 2.2 most nedvking functions return
EINVAL when this setting is missingsin_portcontains the port in network byte ord&he port numbers
belov 1024 are calledreserved ports Only processes with fefctive wer id O or the
CAP_NET_BIND_SERVICE capability maybind(2) to these sockets.

sin_addris the IP host addres¥he addr member ofstruct in_addr contains the host intexfe address in
network order in_addr should be only accessed using iet_aton(3), inet_addr(3), inet_makeaddr(3)
library functions or directly with the name resolver (gethostbynamé3)).

Note that the address and the port aveayd stored in network ordern particular this means that you

need to calhtons(3) on the number that is assigned to a port. All address/port manipulation functions in
the standard library work in network order.

SEE ALSO
sendmsg@?2), recvmsg2), socke(7), netlink (7), tcp(7), udp(7), raw(7), ipfw (7)

SOS1-Klausur Manual-Auszug 2007-03-15 1

malloc(3) malloc(3)

NAME
calloc, malloc, free, realloc — Allocate and free dynamic memory

SYNOPSIS
#include <stdlib.h>

void *calloc(size_tnmembsize_tsize);

void *malloc(size_tsize);

void free(void *ptr);

void *realloc(void *ptr, size_tsize);
DESCRIPTION

calloc() allocates memory for an array mfnembelements okizebytes each and returns a pointer to the

allocated memoryThe memory is set to zero.

malloc() allocatessizebytes and returns a pointer to the allocated menifing memory is not cleared.

free() frees the memory space pointed topy, which must hae been returned by a previous callrtal-
loc(), calloc() or realloc(). Otherwise, or iffree(ptr) has already been called before, undefined\beha
occurs. Ifptris NULL , no goeration is performed.

realloc() changes the size of the memory block pointed tgptoyto size bytes. Thecontents will be
unchanged to the minimum of the old andvrsizes; newly allocated memory will be uninitializef. ptr
is NULL , the call is equidlent to malloc(size) if size is equal to zero, the call is eeplént tofree(ptr).
Unlessptr is NULL , it must hare been returned by an earlier callrt@lloc(), calloc() or realloc().

RETURN VALUE
For calloc() andmalloc(), the value returned is a pointer to the allocated memrigh is suitably aligned
for ary kind of variable, oNULL if the request fails.
free() returns no value.

realloc() returns a pointer to the newly allocated memuiyich is suitably aligned for grkind of variable
and may be different frorptr, or NULL if the request fails. Isizewas equal to 0, either NULL or a
pointer suitable to be passedie() is returned.If realloc() fails the original block is left untouched - it is
not freed or meed.

CONFORMING TO
ANSI-C

SEE ALSO
brk (2), posix_memaligr(3)

SOS1-Klausur Manual-Auszug 2007-03-15 1

pthread_cond(3) pthread_cond(3) pthread_cond(3) pthread_cond(3)

NAME signaled (and thus ignored) between the time a thread locks theandtthe time it waits on the condition
pthread_cond_init, pthread_cond_degtro pthread_cond_signal, pthread_cond_broadcast, variable.
pthread_cond_wait, pthread_cond_timedwait — operations on conditions
pthread_cond_timedwaitatomically unlocksnutexand waits orcond, as pthread_cond_waitdoes, but it

SYNOPSIS also bounds the duration of the waitctindhas not been signaled within the amount of time specified by
#include <pthread.h> abstime the mute mutexis re-acquired angthread_cond_timedwait returns the erroETIMEDOUT .
The abstimeparameter specifies an absolute time, with the same origime(®) andgettimeofday(2): an
pthread_cond_tcond= PTHREAD_COND_INITIALIZER; abstimeof 0 corresponds to 00:00:00 GMJnuary 1, 1970.
int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_att); pthread_cond_destroydestrys a condition variable, freeing the resources it might hold. No threads must
- - - - - - - be waiting on the condition variable on entrancettwread_cond_destroy In the LinuxThreads imple-
int pthread_cond_signal(pthread_cond_t tond); mentation, no resources are associated with condition variablegttinead_cond_destroyactually does

nothing except checking that the condition has no waiting threads.

int pthread_cond_broadcast(pthread_cond_t tond);
CANCELLATION

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutey; pthread_cond_wait and pthread_cond_timedwait are cancellation points. If a thread is cancelled while
suspended in one of these functions, the thread immediately resxeoesos, then locks again theutex

int pthr ead_cond_timedwait(pthread_cond_t ‘tond, pthread_mutex_t *mutex const struct timespec argument topthread_cond_wait and pthread_cond_timedwait and finally eecutes the cancellation.

*abstimé; Consequentlycleanup handlers are assured thatexis locked when theare called.

int pthread_cond_destroy(pthread_cond_t tond); ASYNC-SIGNAL SAFETY

The condition functions are not async-signal safe, and should not be called from a signal Ingvedté-
DESCRIPTION ular, calling pthread_cond_signalor pthread_cond_broadcastfrom a signal handler may deadlock the
A condition (short for “condition ariable’) is a synchronization device that allows threads to suspend calling thread.
execution and relinquish the processors until some predicate on shared data is satisfied. The basic opera-
tions on conditions are: signal the condition (when the predicate becomes true), and wait for the condition,

) ’ - h - RETURN VALUE
suspending the threadeeution until another thread signals the condition.

All condition variable functions return 0 on success and a non-zero error code on error.

A condition variable must alays be associated with a mutex, imid the race condition where a thread

prepares to wait on a conditioaniable and another thread signals the condition just before the first thread ERRORS

actually waits on it. pthread_cond_init, pthread_cond_signa) pthread_cond_broadcast and pthread_cond_wait never
return an error code.

pthread_cond_init initializes the condition ariable cond, using the condition attributes specified in)))]

cond_attr, or default attributes ifcond_attris NULL. The LinuxThreads implementation supports no Thepthread_cond_timedwaitfunction returns the following error codes on error:

attributes for conditions, hence tbend_attrparameter is actually ignored. ETIMEDOUT

) o)) the condition variable was not signaled until the timeout specifietstyme
Variables of type pthread_cond_t can also be initialized statically using the constant

PTHREAD_COND_INITIALIZER .
- - EINTR

pthread_cond_signalrestarts one of the threads that amtiwg on the condition ariablecond. If no pthread_cond_timedwaitwas interrupted by a signal

:erzi:;jtzd?rgeuﬁ‘ttlir;gngtns(;’%rl?,ﬁergw}r:gh.happens. If seral threads are waiting ooond, exactly one is Thepthread_cond_destroyfunction returns the following error code on error:
EBUSY

pthread_cond_broadcastrestarts all the threads that are waiting on the condiawialMecond Nothing some threads are currently waitingamnd

happens if no threads are waitingaamd

AUTHOR

pthread_cond_waitatomically unlocks thenutex(as pempthread_unlock_mutex) and waits for the con- Xavier Leryy <Xavier.Leroy@inria.fr>

dition variablecondto be signaled. The threageeution is suspended and does not consumeCa time
until the condition ariable is signaled. Theutexmust be locked by the calling thread on entrance to

pthread_cond_wait Before returning to the calling thregethread_cond_waitre-acquiresnutex(as per SEE ALSO
pthread_lock_mutex). pthread_condattr_init(3), pthread_mutex_lock3), pthread_mutex_unlock3), gettimeofday2),
T nanosleef(2).

Unlocking the mute and suspending on the condition variable is done atomicBliiys, if all threads
always acquire the muxebefore signaling the condition, this guarantees that the condition cannot be

SOS1-Klausur Manual-Auszug 2007-03-15 1 SOS1-Klausur Manual-Auszug 2007-03-15 2

pthread_create/pthreadit€3) pthread_create/pthreadit¢3)

NAME
pthread_create - create awthread / pthread_exit — terminate the calling thread

SYNOPSIS
#include <pthread.h>
int pthr ead_create(pthead_t * thread, pthread_attr_t * attr, void * (* start_routing(void *), void *
arg);
void pthread_exit(void *retval);

DESCRIPTION
pthread_createcreates a nethread of control that@cutes concurrently with the calling thread. Thevne
thread applies the functiatart_routinepassing itarg as first argument. The wethread terminates either
explicitly, by calling pthread_exit(3), or implicitly, by returning from thestart_routinefunction. The latter
case is equalent to callingpthread_exit(3) with the result returned kstart_routineas exit code.
Theattr agument specifies thread attributes to be applied to thehmead. Septhread_attr_init (3) for a
complete list of thread attributes. Tagr amgument can also EULL , in which case default attributes are
used: the created thread is joinable (not detached) and has default (non real-time) schedyling polic
pthread_exit terminates thexecution of the calling threadAll cleanup handlers that ha been set for the
calling thread withpthread_cleanup_pusl(3) are &ecuted in reerse order (the most recently pushed han-
dler is executed first). Finalization functions for thread-specific data are then called fa@yalthat hae
non- NULL values associated with them in the calling thread (stteead_key_creatg3)). Finally
execution of the calling thread is stopped.
The retval agument is the return value of the thread. It can be consulted from another thread using
pthread_join(3).

RETURN VALUE
On success, the identifier of thewhg created thread is stored in the location pointed bytththead argu-
ment, and a O is returned. On er@ron-zero error code is returned.
Thepthread_exit function neer returns.

ERRORS
EAGAIN

not enough system resources to create a process fomhieread.
EAGAIN
more tharPTHREAD_THREADS_MAX threads are already acti

AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>

SEE ALSO

pthread_join(3), pthread_detach3), pthread_attr_init (3).

SOS1-Klausur Manual-Auszug 2007-03-15 1

pthread_detach(3) pthread_detach(3)

MANE pthread_detach - put a running thread in the detached state
SYNOPSIS

#include <pthread.h>

int pthread_detach(pthread_t th);
DESCRIPTION

pthread_detach put the threadh in the detached state. This guarantees that the memory resources con-
sumed byth will be freed immediately wheth terminates. Havever, this prevents other threads from syn-
chronizing on the termination df usingpthread_join.

A thread can be created initially in the detached state, usintgthehstateattribute topthread_create(3).
In contrastpthread_detachapplies to threads created in the joinable state, and which need to be put in the
detached state later.

After pthread_detachcompletes, subsequent attempts to perfptimead_join on th will fail. If another
thread is already joining the thretidat the timepthread_detachis called,pthread_detachdoes nothing
and leaesth in the joinable state.

RETURN VALUE
On success, 0 is returned. On ereomn-zero error code is returned.

ERRORS
ESRCH
No thread could be found corresponding to that specifigd by

EINVAL
the threadh is already in the detached state

AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_creatg3), pthread_join(3), pthread_attr_setdetachstaté3).

SOS1-Klausur Manual-Auszug 2007-03-15 1

pthread_mute(3)

NAME

pthread_mutg3)

pthread_mute init, pthread_mutex_lock, pthread_mutex_trylock, pthread xmutdock,
pthread_mutex_destyoe- operations on muses

SYNOPSIS

#include <pthread.h>

pthread_mutex_t fastmutexs PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_trecmutex= PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
pthread_mutex_t errchkmutex= PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
int pthread_mutex_init(pthread_mutex_t *mutex const pthread_mutexattr_t *mutexatt);
int pthread_mutex_lock(pthread_mutex_t *mutey;

int pthread_mutex_trylock(pthread_mutex_t *mutey);

int pthread_mutex_unlock(pthread_mutex_t *mute;

int pthread_mutex_destroy(pthread_mutex_t ‘mutey;

DESCRIPTION

A mutex is a MUTual EXclusion device, and is useful for protecting shared data structures from concurrent
modifications, and implementing critical sections and monitors.

A mutex has two possible states: unlocked (not owned by #mmead), and locked (owned by one thread). A
mutex can neer be avned by tvp different threads simultaneousky thread attempting to lock a mute
that is already locked by another thread is suspended until the owning thread unlocks:thigsnute

pthread_mutex_init initializes the mute object pointed to bymutexaccording to the muteattributes
specified irmutexattr If mutexattris NULL , default attributes are used instead.

The LinuxThreads implementation supports only one mattibutes, themutex kind, which is either
“fast”, ‘‘recursive”, or “error checking”. The kind of a mukedetermines whether it can be lockedimg
by a thread that already owns it. The default kindfast”. See pthread_mutexattr_init(3) for more
information on mute attributes.

Variables of type pthread_mutex_t can also be initialized staticallyusing the constants
PTHREAD_MUTEX_INITIALIZER (for fast mutges), PTHREAD_RECURSIVE_MUTEX_INI-
TIALIZER_NP (for recursie mnutexes), and PTHREAD_ERRORCHECK_MUTEX_INITIAL-
IZER_NP (for error checking mutes).

pthread_mutex_lock locks the gien mutex. If the mute is currently unlocled, it becomes locked and
owned by the calling thread, apthread_mutex_lockreturns immediatelyif the mute is dready locled
by another threaghthread_mutex_locksuspends the calling thread until the muiseunlocked.

If the mutex is dready locked by the calling thread, the bebraof pthread_mutex_lock depends on the
kind of the mutex. If the muxeis of the ‘fast” kind, the calling thread is suspended until the mige
unlocked, thus déctively causing the calling thread to deadlock. If the mugeof the “error checking’
kind, pthread_mutex_lock returns immediately with the error coDEADLK . If the mut& is of the
“recursve” kind, pthread_mutex_lock succeeds and returns immediategcording the number of times
the calling thread has loel the mutex. An equal number gthread_mutex_unlock operations must be

SOS1-Klausur Manual-Auszug 2007-03-15 1

pthread_mute(3)

pthread_mutg3)

performed before the muteeturns to the unlocked state.

pthread_mutex_trylock behaes identically topthread_mutex_lock except that it does not block the
calling thread if the museis dready locked by another thread (or by the calling thread in the case of a
“fast” mutex). Insteadpthread_mutex_trylock returns immediately with the error coBBUSY.

pthread_mutex_unlock unlocks the gien mutex. The mute is assumed to be locked and owned by the
calling thread on entrance t@thread_mutex_unlock If the muta is of the ‘fast” kind,
pthread_mutex_unlock always returns it to the unloekl state. If it is of the'recursve” kind, it decre-
ments the locking count of the mutéhumber ofpthread_mutex_lock operations performed on it by the
calling thread), and only when this count reaches zero is thex amitally unlocked.

On “error checking’ mutexes, pthread_mutex_unlock actually checks at run-time that the muis
locked on entrance, and that it was locked by the same thread that éslfing pthread_mutex_unlock
If these conditions are not met, an error code is returned and the mmotains unchanged: Fast” and
“recursve” mutexes perform no such checks, thus aliog a locked muteto be wlocked by a thread
other than its ownefhis is non-portable behavior and must not be relied upon.

pthread_mutex_destroydestrys a mut& object, freeing the resources it might hold. The mueist be
unlocked on entrance. In the LinuxThreads implementation, no resources are associated witijexctte
thuspthread_mutex_destroyactually does nothing except checking that the ristenlocked.

RETURN VALUE

pthread_mutex_init always returns 0. The other mutéunctions return 0 on success and a non-zero error
code on error.

ERRORS

Thepthread_mutex_lockfunction returns the following error code on error:

EINVAL
the mute has not been properly initialized.

EDEADLK
the mute is dready locked by the calling thread (“error checkimgutexes anly).

Thepthread_mutex_unlockfunction returns the following error code on error:

EINVAL
the mute has not been properly initialized.

EPERM
the calling thread does not own the mxuteerror checking’mutexes anly).

Thepthread_mutex_destroyfunction returns the following error code on error:

EBUSY
the mute is currently locked.

AUTHOR

Xavier Lergy <Xavier.Leroy@inria.fr>

SEE ALSO

pthread_mutexattr_init (3), pthread_mutexattr_setkind_np(3), pthread_cance(3).

SOS1-Klausur Manual-Auszug 2007-03-15 2

soclet(3) sockt(3)
NAME

socket — create an endpoint for communication
SYNOPSIS

cc[flag ...] file ... —Isocket —Insl[library ...]

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain int type int protocol);

DESCRIPTION
socket() creates an endpoint for communication and returns a descriptor.

The domainparameter specifies a communications domain within which communication wilptate;

this selects the protocol family which should be used. The protocol family generally is the same as the
address family for the addresses supplied in later operations on thet. sdhlesefamilies are defined in

the include file<sys/socket.h> There must be an entry in thetconfig4) file for at least each protocol
family and type required. Iprotocolhas been specified, but no exact match for the tuameityl type, pro-

tocol is found, then the first entry containing the specified family and type with zero for protocol will be
used. Theurrently understood formats are:

PF_UNIX UNIX system internal protocols
PF_INET ARPA Internet protocols

The sockt has the indicatetype which specifies the communication semantics. Currently defined types
are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQRACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliablepiway connection-based byte streams. An out-of-
band data transmission mechanism may be suppofte&3DCK_DGRAM soclet supports datagrams (con-
nectionless, unreliable messages of a fixed (typically small) maximum lengtBJ0CK_SEQRACKET
soclet may provide a sequenced, reliabley-way connection-based data transmission path for datagrams
of fixed maximum length; a consumer may be required to read an entiet paitkeach read system call.
This facility is protocol specific, and presently not implemented fgr @otocol family. SOCK_RAW
soclets provide access to internal network irgeels. TheaypesSOCK_RAW, which is aailable only to

the super-useend SOCK_RDM, for which no implementation currently exists, are not described here.

protocolspecifies a particular protocol to be used with theetoddormallyonly a single protocol exists to
support a particular socket type within aegi protocol family. Howeve, multiple protocols may exist, in
which case a particular protocol must be specified in this mafiherprotocol number to use is particular
to the “communication domain” in which communication is teetglce. Ifa protocol is specified by the
caller, then it will be packaged into a socketdeoption request and sent to the underlying protocol layers.

Soclets of typeSOCK_STREAM are full-duplex byte streams, similar to pipe# stream socket must be in
aconnectedstate before andata may be sent or reged on it. A connection to another socket is created
with a connec{3N) call. Once connected, data may be transferred usimd(2) andwrite (2) calls or
some variant of theend3N) andrecv(3N) calls. When a session has been completetlpsg€2) may be
performed. Out-of-bandlata may also be transmitted as described ors¢he3N) manual page and
receved as ascribed on theecv(3N) manual page.

The communications protocols used to impleme8D&K_STREAM insure that data is not lost or dupli-
cated. Ifa pece of data for which the peer protocol haffdr space cannot be successfully transmitted
within a reasonable length of time, then the connection is considerezhtanl calls will indicate an error
with -1 returns and witlETIMEDOUT as the specific code in the globariableerrno. The protocols
optionally keep sockets “warm” by forcing transmissions rougkiryeminute in the absence of other

SOS1-Klausur Manual-Auszug 2007-03-15 1

soclet(3) sockt(3)

activity. An eror is then indicated if no response can be elicited on an otherwise idle connection for a
extended period (for instance 5 minutes) SIGPIPE signal is raised if a process sends on a broken stream;
this causes ne¢ processes, which do not handle the signal, to exit.

SOCK_SEQRACKET soclets emply the same system calls 89CK_STREAM soclets. Theonly differ-
ence is thatead(2) calls will return only the amount of data requested, agdemaining in the awing
packet will be discarded.

SOCK_DGRAM and SOCK_RAW soclets allav datagrams to be sent to correspondents named in
sendtq3N) calls. Datagrams are generally regs with recvfrom(3N), which returns the next datagram
with its return address.

An fentl(2) call can be used to specify a process group toveasIGURG signal when the out-of-band
data arves. Itmay also enable non-blocking I/O and asynchronous notification ofvéi@sewith SIGIO
signals.

The operation of sockets is controlled by socketll®ptions These options are defined in the file
<sys/socket.h> setsockopt3N) andgetsockop{3N) are used to set and get options, respayti

RETURN VALUES

ERRORS

A -1lis returned if an error occurs. Otherwise the return value is a descriptor referencing the socket.

Thesoclet() call fails if:

EACCES Permission to create a setlof the specified type and/or protocol is denied.

EMFILE The per-process descriptor table is full.

ENOMEM Insufficient user memory isvalable.

ENOSR There were institient STREAMSresources\ailable to complete the opera-
tion.

EPROTONOSUPPORT The protocol type or the specified protocol is not supported within this
domain.

SEE ALSO

closd?2), fentl (2), ioctl(2), read(2), write (2), accep(3N), bind (3N), connec(3N), getsocknam¢3N), get-
sockopi(3N), listen(3N), recv(3N), setsockop(3N), send3N), shutdown(3N), socketpair(3N),
attributes(5), in(5), socke(5)

SOS1-Klausur Manual-Auszug 2007-03-15 2

unlink(2) unlink(2)

NAME
unlink — remae drectory entry

SYNOPSIS
#include <unistd.h>

int unlink(const char * path);

DESCRIPTION
Theunlink() function remees a Ink to a file. It remaees the link named by the pathname pointed to by
pathand decrements the link count of the file referenced by the link.

When the files link count becomes 0 and no process has the file open, the space occupied by the file will be
freed and the file will no longer be accessibleone or more processesveathe file open when the last

link is remaved, the link will be remwed beforeunlink() returns, but the rerval of the file contents will

be postponed until all references to the file are closed.

RETURN VALUES
Upon successful completioBjs returned. Otherwise;1is returned aneérrno is set to indicate the error.
ERRORS
Theunlink() function will fail and not unlink the file if:
EACCES Search permission is denied for a component op#tleprefix.
EACCES Write permission is denied on the directory containing the link to beveeo
ENOENT The named file does not exist or is a null pathname.
ENOTDIR A component of th@athprefix is not a directory.
EPERM The named file is a directory and théeefive wser of the calling process is not super
user.
SEE ALSO

rm (1), clos€?2), link (2), open(2), rmdir (2),

SOS1-Klausur Manual-Auszug 2007-03-15 1

