
connect(2) connect(2)

NAME
connect − initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *serv_addr, socklen_t addrlen);

DESCRIPTION
The file descriptorsockfdmust refer to a socket. If the socket is of typeSOCK_DGRAM then the
serv_addraddress is the address to which datagrams are sent by default, and the only address from which
datagrams are received. If the socket is of typeSOCK_STREAM or SOCK_SEQPACKET , this call
attempts to make a connection to another socket. Theother socket is specified byserv_addr, which is an
address (of lengthaddrlen) in the communications space of the socket. Eachcommunications space inter-
prets theserv_addrparameter in its own way.

Generally, connection-based protocol sockets may successfullyconnectonly once; connectionless protocol
sockets may useconnectmultiple times to change their association. Connectionless sockets may dissolve
the association by connecting to an address with thesa_familymember ofsockaddrset toAF_UNSPEC.

RETURN VALUE
If the connection or binding succeeds, zero is returned.On error, −1 is returned, anderrno is set appropri-
ately.

ERRORS
The following are general socket errors only. There may be other domain-specific error codes.

EBADF
The file descriptor is not a valid index in the descriptor table.

EFAULT
The socket structure address is outside the user’s address space.

ENOTSOCK
The file descriptor is not associated with a socket.

EISCONN
The socket is already connected.

ECONNREFUSED
No one listening on the remote address.

ENETUNREACH
Network is unreachable.

EADDRINUSE
Local address is already in use.

EAFNOSUPPORT
The passed address didn’t hav ethe correct address family in itssa_familyfield.

EACCES, EPERM
The user tried to connect to a broadcast address without having the socket broadcast flag enabled
or the connection request failed because of a local firewall rule.

SEE ALSO
accept(2), bind(2), listen(2), socket(2), getsockname(2)

SOS1-Klausur Manual-Auszug 2006-03-23 1

opendir/readdir(3) opendir/readdir(3)

NAME
opendir − open a directory / readdir − read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *name);

struct dirent *readdir(DIR * dir);
int readdir_r(DIR * dirp, struct dirent * entry, struct dirent ** result);

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the directoryname, and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to bydir. It returns NULL on reaching the end-of-file or if an error occurred.

DESCRIPTION readdir_r
The readdir_r() function initializes the structure referenced byentry and storesa pointer to this structure
in result. On successful return, the pointer returned at*result will have the samevalue as the argument
entry. Upon reaching the end of the directory stream, this pointer will have the value NULL.

The data returned byreaddir() is overwritten by subsequent calls toreaddir() for the same directory
stream.

Thedirentstructure is defined as follows:

struct dirent {
long d_ino; /* inode number */
off_t d_off; /* offset to the next dirent */
unsigned shortd_reclen; /*length of this record */
unsigned chard_type; /*type of file */
char d_name[256]; /* filename */

};

RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

readdir_r() returns 0if successful or an error number to indicate failure.

ERRORS
EACCES

Permission denied.

ENOENT
Directory does not exist, ornameis an empty string.

ENOTDIR
nameis not a directory.

SOS1-Klausur Manual-Auszug 2006-03-23 1

fopen/fdopen(3) fopen/fdopen(3)

NAME
fopen, fdopen − stream open functions

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * path, const char *mode);
FILE *fdopen(int fildes, const char *mode);

DESCRIPTION
The fopen function opens the file whose name is the string pointed to bypathand associates a stream with
it.

The argumentmodepoints to a string beginning with one of the following sequences (Additional characters
may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.

r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned at the beginning
of the file.

w+ Open for reading and writing.The file is created if it does not exist, otherwise it is truncated.The
stream is positioned at the beginning of the file.

a Open for appending (writing at end of file). The file is created if it does not exist. Thestream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it does not exist.
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descriptor, fildes. The modeof the stream
(one of the values "r", "r+", "w", "w+", "a", "a+") must be compatible with the mode of the file descriptor.
The file position indicator of the new stream is set to that belonging tofildes, and the error and end-of-file
indicators are cleared. Modes "w" or "w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream created byfdopen is closed. The result of applyingfdopen to a
shared memory object is undefined.

RETURN VALUE
Upon successful completionfopen, fdopen and freopen return aFILE pointer. Otherwise,NULL is
returned and the global variableerrno is set to indicate the error.

ERRORS
EINVAL

Themodeprovided tofopen, fdopen, or freopenwas inv alid.

The fopen, fdopen andfreopen functions may also fail and seterrno for any of the errors specified for the
routinemalloc(3).

Thefopen function may also fail and seterrno for any of the errors specified for the routineopen(2).

Thefdopen function may also fail and seterrno for any of the errors specified for the routinefcntl (2).

SEE ALSO
open(2), fclose(3), fileno(3)

SOS1-Klausur Manual-Auszug 2006-03-23 1

fileno(3) fileno(3)

NAME
clearerr, feof, ferror, fileno − check and reset stream status

SYNOPSIS
#include <stdio.h>

void clearerr(FILE * stream);
int feof(FILE * stream);
int ferror(FILE * stream);
int fileno(FILE * stream);

DESCRIPTION
The functionclearerr clears the end-of-file and error indicators for the stream pointed to bystream.

The functionfeof tests the end-of-file indicator for the stream pointed to bystream, returning non-zero if it
is set. The end-of-file indicator can only be cleared by the functionclearerr.

The functionferror tests the error indicator for the stream pointed to bystream, returning non-zero if it is
set. Theerror indicator can only be reset by theclearerr function.

The functionfileno examines the argumentstreamand returns its integer descriptor.

For non-locking counterparts, seeunlocked_stdio(3).

ERRORS
These functions should not fail and do not set the external variableerrno. (However, in casefileno detects
that its argument is not a valid stream, it must return −1 and seterrno to EBADF.)

CONFORMING TO
The functionsclearerr, feof, and ferror conform to X3.159-1989 (‘‘A NSI C’’).

SEE ALSO
open(2), stdio(3), unlocked_stdio(3)

SOS1-Klausur Manual-Auszug 2006-03-23 1

gethostbyname(3) gethostbyname(3)

NAME
gethostbyname − get network host entry

SYNOPSIS
#include <netdb.h>
extern int h_errno;

struct hostent *gethostbyname(const char *name);

DESCRIPTION
The gethostbyname()function returns a structure of typehostentfor the given host name. Herenameis
either a host name, or an IPv4 address in standard dot notation, or an IPv6 address in colon (and possibly
dot) notation. (See RFC 1884 for the description of IPv6 addresses.)

Thehostentstructure is defined in<netdb.h>as follows:

struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses */

}
#define h_addr h_addr_list[0] /*for backward compatibility */

The members of thehostentstructure are:

h_name
The official name of the host.

h_aliases
A zero-terminated array of alternative names for the host.

h_addrtype
The type of address; always AF_INET at present.

h_length
The length of the address in bytes.

h_addr_list
A zero-terminated array of network addresses for the host in network byte order.

h_addr The first address inh_addr_listfor backward compatibility.

RETURN VALUE
Thegethostbyname()function returns thehostentstructure or a NULL pointer if an error occurs. On error,
theh_errnovariable holds an error number.

ERRORS
The variableh_errnocan have the following values:

HOST_NOT_FOUND
The specified host is unknown.

NO_ADDRESSor NO_DAT A
The requested name is valid but does not have an IP address.

SEE ALSO
resolver(3), hosts(5), hostname(7), resolv+(8), named(8)

SPI-Klausur Manual-Auszug 2004-03-16 1

gets(3S) gets(3S)

NAME
gets, fgets − get a string from a stream
fputs, puts − output of strings

SYNOPSIS
#include <stdio.h>

char *gets(char *s);

char *fgets(char *s, int n, FILE * stream);

int fputs(const char *s, FILE * stream);

int puts(const char *s);

DESCRIPTION gets/fgets
The gets() function reads characters from the standard input stream (seeintro (3)), stdin, into the array
pointed to bys, until a newline character is read or an end-of-file condition is encountered. The newline
character is discarded and the string is terminated with a null character.

The fgets() function reads characters from thestream into the array pointed to bys, until n−1 characters
are read, or a newline character is read and transferred tos, or an end-of-file condition is encountered.The
string is then terminated with a null character.

When usinggets(), if the length of an input line exceeds the size ofs, indeterminate behavior may result.
For this reason, it is strongly recommended thatgets()be avoided in favor of fgets().

RETURN VALUES
If end-of-file is encountered and no characters have been read, no characters are transferred tos and a null
pointer is returned. If a read error occurs, such as trying to use these functions on a file that has not been
opened for reading, a null pointer is returned and the error indicator for the stream is set. If end-of-file is
encountered, theEOF indicator for the stream is set. Otherwises is returned.

ERRORS
Thegets()andfgets()functions will fail if data needs to be read and:

EOVERFLOW The file is a regular file and an attempt was made to read at or beyond the offset maxi-
mum associated with the correspondingstream.

DESCRIPTION puts/fputs
fputs() writes the strings to stream, without its trailing’\0’ .

puts() writes the strings and a trailing newline tostdout.

Calls to the functions described here can be mixed with each other and with calls to other output functions
from thestdio library for the same output stream.

RETURN VALUE
puts() andfputs() return a non - negative number on success, orEOF on error.

SPI-Klausur Manual-Auszug 2003-02-12 1

ip(7) ip(7)

NAME
ip − Linux IPv4 protocol implementation

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

tcp_socket = socket(PF_INET, SOCK_STREAM, 0);
raw_socket = socket(PF_INET, SOCK_RAW, protocol);
udp_socket = socket(PF_INET, SOCK_DGRAM, protocol);

DESCRIPTION
The programmer’s interface is BSD sockets compatible.For more information on sockets, seesocket(7).

An IP socket is created by calling thesocket(2) function assocket(PF_INET, socket_type, protocol).
Valid socket types areSOCK_STREAM to open atcp(7) socket, SOCK_DGRAM to open audp(7)
socket, orSOCK_RAW to open araw(7) socket to access the IP protocol directly. protocol is the IP proto-
col in the IP header to be received or sent. Theonly valid values forprotocol are0 and IPPROT O_TCP
for TCP sockets and0 andIPPROT O_UDP for UDP sockets.

When a process wants to receive new incoming packets or connections, it should bind a socket to a local
interface address usingbind(2). Only one IP socket may be bound to any giv en local (address, port) pair.
When INADDR_ANY is specified in the bind call the socket will be bound toall local interfaces. When
listen(2) or connect(2) are called on a unbound socket the socket is automatically bound to a random free
port with the local address set toINADDR_ANY .

ADDRESS FORMAT
An IP socket address is defined as a combination of an IP interface address and a port number. The basic IP
protocol does not supply port numbers, they are implemented by higher level protocols liketcp(7).

struct sockaddr_in {
sa_family_t sin_family; /* address family: AF_INET */
u_int16_t sin_port; /* port in network byte order */
struct in_addrsin_addr; /*internet address */

};
/* Internet address. */
struct in_addr {

u_int32_t s_addr; /* address in network byte order */
};

sin_family is always set toAF_INET . This is required; in Linux 2.2 most networking functions return
EINVAL when this setting is missing.sin_portcontains the port in network byte order. The port numbers
below 1024 are called reserved ports. Only processes with effective user id 0 or the
CAP_NET_BIND_SERVICE capability maybind(2) to these sockets.

sin_addris the IP host address.Theaddr member ofstruct in_addr contains the host interface address in
network order. in_addr should be only accessed using theinet_aton(3), inet_addr(3), inet_makeaddr(3)
library functions or directly with the name resolver (seegethostbyname(3)).

Note that the address and the port are always stored in network order. In particular, this means that you
need to callhtons(3) on the number that is assigned to a port. All address/port manipulation functions in
the standard library work in network order.

SEE ALSO
sendmsg(2), recvmsg(2), socket(7), netlink (7), tcp(7), udp(7), raw(7), ipfw (7)

SOS1-Klausur Manual-Auszug 2006-03-23 1

malloc(3) malloc(3)

NAME
calloc, malloc, free, realloc − Allocate and free dynamic memory

SYNOPSIS
#include <stdlib.h>

void *calloc(size_tnmemb, size_t size);
void *malloc(size_t size);
void free(void *ptr);
void *realloc(void *ptr , size_t size);

DESCRIPTION
calloc() allocates memory for an array ofnmembelements ofsizebytes each and returns a pointer to the
allocated memory. The memory is set to zero.

malloc() allocatessizebytes and returns a pointer to the allocated memory. The memory is not cleared.

free() frees the memory space pointed to byptr, which must have been returned by a previous call tomal-
loc(), calloc() or realloc(). Otherwise, or iffree(ptr) has already been called before, undefined behaviour
occurs. Ifptr is NULL , no operation is performed.

realloc() changes the size of the memory block pointed to byptr to size bytes. Thecontents will be
unchanged to the minimum of the old and new sizes; newly allocated memory will be uninitialized.If ptr
is NULL , the call is equivalent tomalloc(size); if size is equal to zero, the call is equivalent to free(ptr).
Unlessptr is NULL , it must have been returned by an earlier call tomalloc(), calloc()or realloc().

RETURN VALUE
For calloc() andmalloc(), the value returned is a pointer to the allocated memory, which is suitably aligned
for any kind of variable, orNULL if the request fails.

free() returns no value.

realloc() returns a pointer to the newly allocated memory, which is suitably aligned for any kind of variable
and may be different fromptr, or NULL if the request fails. Ifsizewas equal to 0, either NULL or a
pointer suitable to be passed tofree() is returned.If realloc() fails the original block is left untouched - it is
not freed or moved.

CONFORMING TO
ANSI-C

SEE ALSO
brk (2), posix_memalign(3)

SOS1-Klausur Manual-Auszug 2006-03-23 1

memcpy(3) memcpy(3)

NAME
memcpy − copy memory area

SYNOPSIS
#include <string.h>

void *memcpy(void *dest, const void *src, size_t n);

DESCRIPTION
The memcpy() function copiesn bytes from memory areasrc to memory areadest. The memory areas
may not overlap. Usememmove(3) if the memory areas do overlap.

RETURN VALUE
Thememcpy()function returns a pointer todest.

CONFORMING TO
SVID 3, BSD 4.3, ISO 9899

SEE ALSO
bcopy(3), memccpy(3), memmove(3), strcpy(3), strncpy(3)

SPI-Klausur Manual-Auszug 2004-03-16 1

pthread_create/pthread_exit(3) pthread_create/pthread_exit(3)

NAME
pthread_create − create a new thread / pthread_exit − terminate the calling thread

SYNOPSIS
#include <pthread.h>

int pthr ead_create(pthread_t * thread, pthr ead_attr_t * attr, void * (* start_routine)(void *), void *
arg);

void pthread_exit(void *retval);

DESCRIPTION
pthread_createcreates a new thread of control that executes concurrently with the calling thread. The new
thread applies the functionstart_routinepassing itarg as first argument. The new thread terminates either
explicitly, by calling pthread_exit(3), or implicitly, by returning from thestart_routinefunction. The latter
case is equivalent to callingpthread_exit(3) with the result returned bystart_routineas exit code.

Theattr argument specifies thread attributes to be applied to the new thread. Seepthread_attr_init (3) for a
complete list of thread attributes. Theattr argument can also beNULL , in which case default attributes are
used: the created thread is joinable (not detached) and has default (non real-time) scheduling policy.

pthread_exit terminates the execution of the calling thread.All cleanup handlers that have been set for the
calling thread withpthread_cleanup_push(3) are executed in reverse order (the most recently pushed han-
dler is executed first). Finalization functions for thread-specific data are then called for all keys that have
non- NULL values associated with them in the calling thread (seepthread_key_create(3)). Finally,
execution of the calling thread is stopped.

The retval argument is the return value of the thread. It can be consulted from another thread using
pthread_join(3).

RETURN VALUE
On success, the identifier of the newly created thread is stored in the location pointed by thethreadargu-
ment, and a 0 is returned. On error, a non-zero error code is returned.

Thepthread_exit function never returns.

ERRORS
EAGAIN

not enough system resources to create a process for the new thread.

EAGAIN
more thanPTHREAD_THREADS_MAX threads are already active.

AUTHOR
Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_join(3), pthread_detach(3), pthread_attr_init (3).

SOS1-Klausur Manual-Auszug 2006-03-23 1

socket(3) socket(3)

NAME
socket − create an endpoint for communication

SYNOPSIS
cc [flag . . .] file . . . −lsocket −lnsl[library . . .]

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
socket() creates an endpoint for communication and returns a descriptor.

The domainparameter specifies a communications domain within which communication will take place;
this selects the protocol family which should be used. The protocol family generally is the same as the
address family for the addresses supplied in later operations on the socket. Thesefamilies are defined in
the include file<sys/socket.h>. There must be an entry in thenetconfig(4) file for at least each protocol
family and type required. Ifprotocolhas been specified, but no exact match for the tuplet family, type, pro-
tocol is found, then the first entry containing the specified family and type with zero for protocol will be
used. Thecurrently understood formats are:

PF_UNIX UNIX system internal protocols

PF_INET ARPA Internet protocols

The socket has the indicatedtype, which specifies the communication semantics. Currently defined types
are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection-based byte streams.An out-of-
band data transmission mechanism may be supported.A SOCK_DGRAM socket supports datagrams (con-
nectionless, unreliable messages of a fixed (typically small) maximum length).A SOCK_SEQPACKET
socket may provide a sequenced, reliable, two-way connection-based data transmission path for datagrams
of fixed maximum length; a consumer may be required to read an entire packet with each read system call.
This facility is protocol specific, and presently not implemented for any protocol family. SOCK_RAW
sockets provide access to internal network interfaces. ThetypesSOCK_RAW, which is available only to
the super-user, and SOCK_RDM, for which no implementation currently exists, are not described here.

protocolspecifies a particular protocol to be used with the socket. Normallyonly a single protocol exists to
support a particular socket type within a given protocol family. Howev er, multiple protocols may exist, in
which case a particular protocol must be specified in this manner. The protocol number to use is particular
to the “communication domain” in which communication is to take place. Ifa protocol is specified by the
caller, then it will be packaged into a socket level option request and sent to the underlying protocol layers.

Sockets of typeSOCK_STREAM are full-duplex byte streams, similar to pipes.A stream socket must be in
a connectedstate before any data may be sent or received on it. A connection to another socket is created
with a connect(3N) call. Once connected, data may be transferred usingread(2) andwrite (2) calls or
some variant of thesend(3N) andrecv(3N) calls. When a session has been completed, aclose(2) may be
performed. Out-of-banddata may also be transmitted as described on thesend(3N) manual page and
received as described on therecv(3N) manual page.

The communications protocols used to implement aSOCK_STREAM insure that data is not lost or dupli-
cated. Ifa piece of data for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection is considered broken and calls will indicate an error
with −1 returns and withETIMEDOUT as the specific code in the global variableerrno. The protocols
optionally keep sockets “warm” by forcing transmissions roughly every minute in the absence of other

SOS1-Klausur Manual-Auszug 2006-03-23 1

socket(3) socket(3)

activity. An error is then indicated if no response can be elicited on an otherwise idle connection for a
extended period (for instance 5 minutes).A SIGPIPE signal is raised if a process sends on a broken stream;
this causes naive processes, which do not handle the signal, to exit.

SOCK_SEQPACKET sockets employ the same system calls asSOCK_STREAM sockets. Theonly differ-
ence is thatread(2) calls will return only the amount of data requested, and any remaining in the arriving
packet will be discarded.

SOCK_DGRAM and SOCK_RAW sockets allow datagrams to be sent to correspondents named in
sendto(3N) calls. Datagrams are generally received with recvfrom(3N), which returns the next datagram
with its return address.

An fcntl (2) call can be used to specify a process group to receive aSIGURG signal when the out-of-band
data arrives. It may also enable non-blocking I/O and asynchronous notification of I/O events withSIGIO
signals.

The operation of sockets is controlled by socket level options. These options are defined in the file
<sys/socket.h>. setsockopt(3N) andgetsockopt(3N) are used to set and get options, respectively.

RETURN VALUES
A −1 is returned if an error occurs. Otherwise the return value is a descriptor referencing the socket.

ERRORS
Thesocket() call fails if:

EACCES Permission to create a socket of the specified type and/or protocol is denied.

EMFILE The per-process descriptor table is full.

ENOMEM Insufficient user memory is available.

ENOSR There were insufficient STREAMSresources available to complete the opera-
tion.

EPROT ONOSUPPORT The protocol type or the specified protocol is not supported within this
domain.

SEE ALSO
close(2), fcntl (2), ioctl(2), read(2), write (2), accept(3N), bind(3N), connect(3N), getsockname(3N), get-
sockopt(3N), listen(3N), recv(3N), setsockopt(3N), send(3N), shutdown(3N), socketpair(3N),
attributes(5), in(5), socket(5)

SOS1-Klausur Manual-Auszug 2006-03-23 2

stat(2) stat(2)

NAME
stat, fstat, lstat − get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char *file_name, struct stat * buf);
int fstat(int filedes, struct stat * buf);
int lstat(const char * file_name, struct stat * buf);

DESCRIPTION
These functions return information about the specified file.You do not need any access rights to the file to
get this information but you need search rights to all directories named in the path leading to the file.

stat stats the file pointed to byfile_nameand fills inbuf .

lstat is identical tostat, except in the case of a symbolic link, where the link itself is stat-ed, not the file that
it refers to.

fstat is identical tostat, only the open file pointed to byfiledes(as returned byopen(2)) is stat-ed in place
of file_name.

They all return astatstructure, which contains the following fields:

struct stat {
dev_t st_dev; /* device */
ino_t st_ino; /* inode */
mode_t st_mode; /* protection */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device type (if inode device) */
off_t st_size; /* total size, in bytes */
blksize_t st_blksize;/* blocksize for filesystem I/O */
blkcnt_t st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

};

The valuest_sizegives the size of the file (if it is a regular file or a symlink) in bytes. The size of a symlink
is the length of the pathname it contains, without trailing NUL.

The valuest_blocksgives the size of the file in 512-byte blocks.(This may be smaller thanst_size/512 e.g.
when the file has holes.) The valuest_blksizegives the "preferred" blocksize for efficient file system I/O.
(Writing to a file in smaller chunks may cause an inefficient read-modify-rewrite.)

Not all of the Linux filesystems implement all of the time fields. Some file system types allow mounting in
such a way that file accesses do not cause an update of thest_atimefield. (See ‘noatime’ inmount(8).)

The fieldst_atimeis changed by file accesses, e.g. byexecve(2), mknod(2), pipe(2), utime(2) andread(2)
(of more than zero bytes). Other routines, likemmap(2), may or may not updatest_atime.

The fieldst_mtimeis changed by file modifications, e.g. bymknod(2), truncate(2), utime(2) andwrite (2)
(of more than zero bytes).Moreover, st_mtimeof a directory is changed by the creation or deletion of files
in that directory. Thest_mtimefield isnotchanged for changes in owner, group, hard link count, or mode.

SOS1-Klausur Manual-Auszug 2006-03-23 1

stat(2) stat(2)

The fieldst_ctimeis changed by writing or by setting inode information (i.e., owner, group, link count,
mode, etc.).

The following POSIX macros are defined to check the file type:

S_ISREG(m) isit a regular file?

S_ISDIR(m) directory?

S_ISCHR(m) characterdevice?

S_ISBLK(m) blockdevice?

S_ISFIFO(m) fifo?

S_ISLNK(m) symboliclink? (Not in POSIX.1-1996.)

S_ISSOCK(m) socket? (Not in POSIX.1-1996.)

The following flags are defined for thest_modefield:

S_IFMT 0170000 bitmask for the file type bitfields
S_IFSOCK 0140000 socket
S_IFLNK 0120000 symbolic link
S_IFREG 0100000 regular file
S_IFBLK 0060000 block device
S_IFDIR 0040000 directory
S_IFCHR 0020000 character device
S_IFIFO 0010000 fifo
S_ISUID 0004000 set UID bit
S_ISGID 0002000 set GID bit (see below)
S_ISVTX 0001000 sticky bit (see below)
S_IRWXU 00700 mask for file owner permissions
S_IRUSR 00400 owner has read permission
S_IWUSR 00200 owner has write permission
S_IXUSR 00100 owner has execute permission
S_IRWXG 00070 mask for group permissions
S_IRGRP 00040 group has read permission
S_IWGRP 00020 group has write permission
S_IXGRP 00010 group has execute permission
S_IRWXO 00007 mask for permissions for others (not in group)
S_IROTH 00004 othershave read permission
S_IWOTH 00002 othershave write permisson
S_IXOTH 00001 others have execute permission

The set GID bit (S_ISGID) has several special uses: For a directory it indicates that BSD semantics is to be
used for that directory: files created there inherit their group ID from the directory, not from the effective
group ID of the creating process, and directories created there will also get the S_ISGID bit set.For a file
that does not have the group execution bit (S_IXGRP) set, it indicates mandatory file/record locking.

The ‘sticky’ bit (S_ISVTX) on a directory means that a file in that directory can be renamed or deleted only
by the owner of the file, by the owner of the directory, and by a privileged process.

RETURN VALUE
On success, zero is returned. On error, −1 is returned, anderrno is set appropriately.

SEE ALSO
chmod(2), chown(2), readlink (2), utime(2), capabilities(7)

SOS1-Klausur Manual-Auszug 2006-03-23 2

unlink(2) unlink(2)

NAME
unlink − remove directory entry

SYNOPSIS
#include <unistd.h>

int unlink(const char * path);

DESCRIPTION
The unlink() function removes a link to a file. It removes the link named by the pathname pointed to by
pathand decrements the link count of the file referenced by the link.

When the file’s link count becomes 0 and no process has the file open, the space occupied by the file will be
freed and the file will no longer be accessible.If one or more processes have the file open when the last
link is removed, the link will be removed beforeunlink() returns, but the removal of the file contents will
be postponed until all references to the file are closed.

RETURN VALUES
Upon successful completion,0 is returned. Otherwise,−1 is returned anderrno is set to indicate the error.

ERRORS
Theunlink() function will fail and not unlink the file if:

EACCES Search permission is denied for a component of thepathprefix.

EACCES Write permission is denied on the directory containing the link to be removed.

ENOENT The named file does not exist or is a null pathname.

ENOTDIR A component of thepathprefix is not a directory.

EPERM The named file is a directory and the effective user of the calling process is not super-
user.

SEE ALSO
rm (1), close(2), link (2), open(2), rmdir (2),

SOS1-Klausur Manual-Auszug 2006-03-23 1

