accept(3) accept(3)

NAME

accept — accept a connection on a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, sruct sockaddr *addr, int * addrler);

DESCRIPTION

The aguments is a socket that has been created wiitbke{3N) and bound to an address wiitimd (3N),

and that is listening for connections after a callsien(3N). Theaccept()function extracts the first con-
nection on the queue of pending connections, creates socket with the properties of and allocates a

new file descriptarns, for the sockt. If no pending connections are present on the queue and the socket is
not marked as non-blockingccept() blocks the caller until a connection is present. If the socket is
marked as non-blocking and no pending connections are present on theapoepd()returns an error as
described belw. The accept()function uses theetconfig4) file to determine th6 TREAMS device file

name associated with This is the device on which the connect indication will be accepted. The accepted
socketns, is used to read and write data to and from the socket that connectgdt is not used to accept
more connections. The original socksitremains open for accepting further connections.

The agumentaddr is a result parameter that is filled in with the address of the connecting entity as it is
known to the communications layeThe exact format of thaddr parameter is determined by the domain
in which the communication occurs.

The agumentaddrlenis a \alue-result parametetnitially, it contains the amount of space pointed to by
addr; on return it contains the length in bytes of the address returned.

Theaccept()function is used with connection-based socket types, currentlys@itiK_STREAM.

It is possible taselec{3C) orpoll(2) a sockt for the purpose of accept()by selecting or polling it for a
read. Havever, this will only indicate when a connect indication is pending; it is still necessary to call
accept()

RETURN VALUES

Theaccept()function returns-1 on error If it succeeds, it returns a nongative integer that is a descrip-
tor for the accepted socket.

ERRORS

accept()will fail if:

EBADF The descriptor is walid.

EINTR The accept attempt was interrupted by theveslfiof a signal.

EMFILE The per-process descriptor table is full.

ENODEV The protocol &mily and type corresponding $a@ould not be found in theetcon-
fig file.

ENOMEM There was insufficient user memomgitable to complete the operation.

EPROTO A protocol error has occurred; for example, 8®REAMS protocol stack has not
been initialized or the connection has already been released.

EWOULDBLOCK The socket is marked as non-blocking and no connections are present to be

accepted.

SEE ALSO

poll(2), bind(3N), connec(3N), listen(3N), selec{3C), socke(3N), netconfig4), attributes(5), socke(5)

SOSI-Klausur Manual-Auszug 2005-09-08 1

bind(3) bind(3)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int bind(int s, const struct sockaddr *name int namele);

DESCRIPTION
bind() assigns a name to an unnamed stckVhena ocket is created witsocke(3N), it exists in a name
space (address family) but has no name assighiedi() requests that the name pointed toriamebe
assigned to the socket.

RETURN VALUES
If the bind is successfulis returned.A return \alue of-1 indicates an errowhich is further specified in
the globalerrno.

ERRORS
Thebind() call will fail if:

EACCES The requested address is protected and the current user has inadequate permission
to access it.
EADDRINUSE The specified address is already in use.
EADDRNOTAVAIL The specified address is netigable on the local machine.
EBADF sis not a valid descriptor.
EINVAL nameleris not the size of a valid address for the specified address family.
EINVAL The socket is already bound to an address.
ENOSR There were insufficierBTREAMSresources for the operation to complete.
ENOTSOCK sis a descriptor for a file, not a socket.
The following errors are specific to binding nhames inUN&x domain:
EACCES Search permission is denied for a component of the path prefix of the pathname in
name
EIO An I/O error occurred while making the directory entry or allocating the inode.
EISDIR A null pathname was specified.
ELOOP Too mary symbolic links were encountered in translating the pathnamarime
ENOENT A component of the path prefix of the pathnameamedoes not exist.
ENOTDIR A component of the path prefix of the pathnameameis not a directory.
EROFS The inode would reside on a read-only file system.
SEE ALSO
unlink (2), socke(3N), attributes(5), socke(5)
NOTES

Binding a name in th&INIX domain creates a socket in the file system that must be deleted by the caller

when it is no longer needed (usiaglink (2)).
The rules used in name binding vary between communication domains.

SOSI-Klausur Manual-Auszug 2005-09-08 1

opendir/readdir(3) opendir/readdir(3)

NAME
opendir — open a directory / readdir — read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>
DIR *opendir(const char *name);

struct dirent *readdir(DIR * dir);
int readdir_r(DIR * dirp, struct dirent * entry, struct dirent ** result);

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the direcéong and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to lajr. It returns NULL on reaching the end-of-file or if an error occurred.

DESCRIPTION readdir_r
Thereaddir_r() function initializes the structure referenced egtry and storesa pointer to this structure
in result On successful return, the pointer returned-@sult will have the samevaue asthe agument
entry. Upon reaching the end of the directory stream, this pointer widl ti@ value NULL.

The data returned byeaddir() is overwritten by subsequent calls teaddir() for the same directory
stream.

Thedirentstructure is defined as follows:

struct dirent {

long d_ino; /* inode number */
off_t d_of; /* offset to the next dirent */
unsigned shord_reclen; [*length of this record */
unsigned chard_type; [*type of file */
char d_name[256]; /* filename */
I3
RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

readdir_r() returns Qf successful or an error number to indicate failure.

ERRORS
EACCES
Permission denied.

ENOENT
Directory does not exist, orameis an empty string.

ENOTDIR
nameis not a directory.

SOSI-Klausur Manual-Auszug 2005-09-08 1

fopen/fdopen(3) fopen/fdopen(3)

NAME
fopen, fdopen - stream open functions

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * path, const char *mods);
FILE *fdopen(int fildes const char *mode);

DESCRIPTION
The fopen function opens the file whose name is the string pointed gathyand associates a stream with
it.

The agumentmodepoints to a string lggnning with one of the following sequences (Additional characters
may follov these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.

r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned agieig
of the file.

W+ Open for reading and writing. The file is created if it does rist,eotherwise it is truncatedlhe
stream is positioned at the beginning of the file.

a Open for appending (writing at end of fileJhe file is created if it does notist. Thestream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it doegistot e
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descrifites The modeof the stream
(one of the glues "r", "r+", "w", "w+", "a", "a+") must be compatible with the mode of the file descriptor
The file position indicator of the nestream is set to that belongingfitsles and the error and end-of-file
indicators are clearedModes "w" or "w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream createfddyyenis closed. The result of applyifidopento a
shared memory object is undefined.

RETURN VALUE
Upon successful completioiopen, fdopen and freopen return aFILE pointer Otherwise,NULL is
returned and the global varialdernois set to indicate the error.

ERRORS
EINVAL
Themodeprovided tofopen, fdopen, or freopenwas invdid.

Thefopen, fdopen andfreopen functions may also fail and setrno for ary of the errors specified for the
routinemalloc(3).

Thefopen function may also fail and setrno for ary of the errors specified for the routinpen(2).
Thefdopenfunction may also fail and setrno for ary of the errors specified for the routifentl (2).

SEE ALSO
open(2), fclosg3), fileno(3)

SOSI-Klausur Manual-Auszug 2005-09-08 1

ip(7) ip(7)

NAME
ip — Linux IPv4 protocol implementation

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

tcp_soket = socket(PF_INET, SOCK_STREAM, 0);
raw_soket = socket(PF_INET, SOCK_RAW, protocol);
udp_soket = socket(PF_INET, SOCK_DGRAM, protocol);

DESCRIPTION
The programmes’interface is BSD sockets compatibleor more information on sockets, ssecke(7).

An IP socket is created by calling teecke(2) function assocket(PF_INET, socket_type, protocol).
Valid socket types ar&OCK_STREAM to open atcp(7) soclet, SOCK_DGRAM to open audp(7)
soclet, orSOCK_RAW to open aaw(7) socket to access the IP protocol directiyotocolis the IP proto-
col in the IP header to be reead or £nt. Theonly valid values foprotocol are0 andIPPROTO_TCP
for TCP sockets andandIPPROTO_UDP for UDP sockets.

When a process wants to raeirew incoming packets or connections, it should bind a socket to a local
interface address usirgnd(2). Onlyone IP sock&t may be bound to grmgiven local (address, port) pair
WhenINADDR_ANY is specified in the bind call the socket will be boundaltdocal interfaces. When
listen(2) or connec(2) are called on a unbound socket the socket is automatically bound to a random free
port with the local address setiMADDR_ANY .

ADDRESS FORMAT
An IP socket address is defined as a combination of an IP interface address and a parTherbbesic IP
protocol does not supply port numbersythaee implemented by highendel protocols liketcp(7).

struct sockaddr_in {
sa_fmily_t sin_tmily; /* address family: AF_INET */
u_intl6_t sin_port; /* port in network byte order */
struct in_addrsin_addr; [finternet address */
h
/* Internet address. */
struct in_addr {
u_int32_t s_addr; /* address in network byte order */
h
sin_familyis aways set toAF_INET. This is required; in Linux 2.2 most networking functions return
EINVAL when this setting is missingsin_portcontains the port in network byte ord&he port numbers
belov 1024 are calledreserved ports Only processes with fefctive wer id O or the
CAP_NET_BIND_SERVICE capability maybind(2) to these sockets.

sin_addris the IP host addres3he addr member ofstruct in_addr contains the host interface address in
network order in_addr should be only accessed using iet_aton(3), inet_addr(3), inet_makeaddr(3)
library functions or directly with the name resolver (gethostbynamé3)).

Note that the address and the port aveays stored in network ordern particular this means that you

need to calhtons(3) on the number that is assigned to a port. All address/port manipulation functions in
the standard library work in network order.

SEE ALSO
sendmsg?2), recvmsg2), socke(7), netlink (7), tcp(7), udp(7), raw(7), ipfw (7)

SOSI-Klausur Manual-Auszug 2005-03-07 1

malloc(3) malloc(3)

NAME
calloc, malloc, free, realloc — Allocate and free dynamic memory

SYNOPSIS
#include <stdlib.h>

void *calloc(size_tnmembsize_tsize);

void *malloc(size_tsize);

void free(void *ptr);

void *realloc(void *ptr, size_tsize);
DESCRIPTION

calloc() allocates memory for an array mfnembelements okizebytes each and returns a pointer to the

allocated memoryThe memory is set to zero.

malloc() allocatessizebytes and returns a pointer to the allocated menifing memory is not cleared.

free() frees the memory space pointed topy, which must hae been returned by a prieus call tomal-
loc(), calloc() or realloc(). Otherwise, or iffree(ptr) has already been called before, undefined\beha
occurs. Ifptris NULL , no goeration is performed.

realloc() changes the size of the memory block pointed tgptoyto size bytes. Thecontents will be
unchanged to the minimum of the old andvrsizes; nevly allocated memory will be uninitializedf ptr
is NULL , the call is equidlent to malloc(size) if size is equal to zero, the call is eeplént tofree(ptr).
Unlessptr is NULL , it must hare been returned by an earlier callrt@lloc(), calloc() or realloc().

RETURN VALUE
For calloc() andmalloc(), the value returned is a pointer to the allocated memdrigh is suitably aligned
for ary kind of variable, oNULL if the request fails.
free() returns no value.
realloc() returns a pointer to the newly allocated memuiyich is suitably aligned for grkind of variable
and may be different frorptr, or NULL if the request fails. Isizewas equal to 0, either NULL or a
pointer suitable to be passedie() is returned.If realloc() fails the original block is left untouched - it is
not freed or meed.

CONFORMING TO
ANSI-C

SEE ALSO
brk (2), posix_memaligr(3)

SOS1-Klausur Manual-Auszug 2005-06-09 1

PTHREAD_COND(3) PTHREAD_COND(3) PTHREAD_COND(3) PTHREAD_COND(3)

NAME signaled (and thus ignored) between the time a thread locks theandtthe time it waits on the condition
pthread_cond_init, pthread_cond_degtro pthread_cond_signal, pthread_cond_broadcast, variable.
pthread_cond_wait, pthread_cond_timedwait — operations on conditions
pthread_cond_timedwaitatomically unlocksnutexand waits orcond, as pthread_cond_waitdoes, but it

SYNOPSIS also bounds the duration of the waitctindhas not been signaled within the amount of time specified by
#include <pthread.h> abstime the mute mutexis re-acquired angthread_cond_timedwait returns the erroETIMEDOUT .
The abstimeparameter specifies an absolute time, with the same origime(®) andgettimeofday(2): an
pthread_cond_tcond= PTHREAD_COND_INITIALIZER; abstimeof 0 corresponds to 00:00:00 GMJnuary 1, 1970.
int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_att); pthread_cond_destroydestrys a condition variable, freeing the resources it might hold. No threads must
- - - - - - - be waiting on the condition variable on entranceptbread_cond_destroy In the LinuxThreads imple-
int pthread_cond_signal(pthread_cond_t tond); mentation, no resources are associated with condition variablegttinead_cond_destroyactually does

nothing except checking that the condition has no waiting threads.

int pthread_cond_broadcast(pthread_cond_t tond);
CANCELLATION

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutey; pthread_cond_wait and pthread_cond_timedwait are cancellation points. If a thread is cancelled while
suspended in one of these functions, the thread immediately resxeoesos, then locks again theutex

int pthr ead_cond_timedwait(pthread_cond_t ‘tond, pthread_mutex_t *mutex const struct timespec amgument topthread_cond_wait and pthread_cond_timedwait and finally eecutes the cancellation.

*abstime; Consequentlycleanup handlers are assured thatexis locked when theare called.

int pthread_cond_destroy(pthread_cond_t tond); ASYNC-SIGNAL SAFETY

The condition functions are not async-signal safe, and should not be called from a signal Ingvedté-
DESCRIPTION ular, calling pthread_cond_signalor pthread_cond_broadcastfrom a signal handler may deadlock the
A condition (short for “condition &riable’) is a synchronization device that alls threads to suspend calling thread.
execution and relinquish the processors until some predicate on shared data is satisfied. The basic opera-
tions on conditions are: signal the condition (when the predicate becomes trueyitaiod the condition,

) ’ - h - RETURN VALUE
suspending the threadeeution until another thread signals the condition.

All condition variable functions return 0 on success and a non-zero error code on error.

A condition variable must alays be associated with a mutex, imid the race condition where a thread
prepares to wait on a conditioariable and another thread signals the condition just before the first thread ERRORS
actually waits on it. pthread_cond_init, pthread_cond_signa) pthread_cond_broadcast and pthread_cond_wait never
return an error code.
pthread_cond_init initializes the condition ariable cond, using the condition attributes specified in
cond_attr, or default attributes ifcond_attris NULL. The LinuxThreads implementation supports no Thepthread_cond_timedwaitfunction returns the following error codes on error:
attributes for conditions, hence tbend_attrparameter is actually ignored. ETIMEDOUT
the condition variable was not signaled until the timeout specifiedb&tyme
Variables of type pthread_cond_t can also be initialized statically using the constant
PTHREAD_COND_INITIALIZER .

EINTR
pthread_cond_signalrestarts one of the threads that are waiting on the condiéinablecond. If no pthread_cond_timedwaitwas interrupted by a signal
threads are waiting onond, nothing happens. If seral threads are waiting ocond, exactly one is . .
restarted. but it is n%t spec(ijf'ied whigh op 9 d Y Thepthread_cond_destroyfunction returns the following error code on error:
EBUSY
pthread_cond_broadcastrestarts all the threads that are waiting on the condiawialMecond Nothing some threads are currently waitingamnd

happens if no threads are waitingammd

AUTHOR

pthread_cond_waitatomically unlocks thenutex(as pempthread_unlock_mutex) and waits for the con- Xavier Lery <Xavier.Leroy@inria.fr>

dition variablecondto be signaled. The threageeution is suspended and does not consumeCa time
until the condition variable is signaled. Thautexmust be locked by the calling thread on entrance to

pthread_cond_wait Before returning to the calling thregethread_cond_waitre-acquiresnutex(as per SEE ALSO
pthread_lock_mutex). pthread_condattr_init(3), pthread_mutex_lock3), pthread_mutex_unlock3), gettimeofday(2),
T nanosleef(2).

Unlocking the mute and suspending on the condition variable is done atomicBiiys, if all threads
always acquire the muxebefore signaling the condition, this guarantees that the condition cannot be

SOSI-Klausur Manual-Auszug 2005-09-08 1 SOSI-Klausur Manual-Auszug 2005-09-08 2

PTHREAD_CREAE(3) PTHREAD_CREAE(3)

NAME
pthread_create - create awthread
SYNOPSIS
#include <pthread.h>
int pthr ead_create(pthead_t * thread, pthread_attr_t * attr, void * (* start_routing(void *), void *
arg);
DESCRIPTION
pthread_createcreates a e thread of control thatecutes concurrently with the calling thread. Thevne
thread applies the functiastart_routinepassing itarg as first agument. The ne thread terminates either
explicitly, by calling pthread_exit(3), or implicitly, by returning from thestart_routinefunction. The latter
case is equilent to callingpthread_exit(3) with the result returned kstart_routineas exit code.
Theattr agument specifies thread atuites to be applied to thew¢hread. Seethread_attr_init (3) for a
complete list of thread attributes. Tagr amgument can also RULL , in which case default attributes are
used: the created thread is joinable (not detached) and has default (non real-time) schedyling polic
RETURN VALUE
On success, the identifier of thewhe created thread is stored in the location pointed byththead argu-
ment, and a 0 is returned. On er@ron-zero error code is returned.
ERRORS
EAGAIN
not enough system resources to create a process fomthieread.
EAGAIN
more tharPTHREAD_THREADS_MAX threads are already acti
AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>
SEE ALSO

pthread_exit(3), pthread_join(3), pthread_detach(3), pthread_attr_init (3).

SOSI-Klausur Manual-Auszug 2005-09-08 1

PTHREAD_MUTEX(3) PTHREAD_MUTEX(3)

pthread_mute init, pthread_mutex_lock, pthread_mutex_trylock, pthread xmutdock,
pthread_mutex_destyo- operations on muses

SYNOPSIS

#include <pthread.h>

pthread_mutex_t fastmutexs PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_trecmutex= PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
pthread_mutex_t errchkmutex= PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
int pthread_mutex_init(pthread_mutex_t *mutex const pthread_mutexattr_t *mutexatt);
int pthread_mutex_lock(pthread_mutex_t *mutey;

int pthread_mutex_trylock(pthread_mutex_t *mutey;

int pthread_mutex_unlock(pthread_mutex_t *mutey;

int pthread_mutex_destroy(pthread_mutex_t ‘mutey;

DESCRIPTION

A mutex is a MUTual EXclusion device, and is useful for protecting shared data structures from concurrent
modifications, and implementing critical sections and monitors.

A mutex has two possible states: unlocked (not owned by #mead), and locked (owned by one thread). A
mutex can neer be avned by tvo different threads simultaneousky thread attempting to lock a mute
that is already locked by another thread is suspended until the owning thread unlocks:tligsnute

pthread_mutex_init initializes the mute object pointed to bymutexaccording to the mukeattributes
specified inmutexattr If mutexattris NULL , default attributes are used instead.

The LinuxThreads implementation supports only one mattibutes, themutex kind, which is either
“fast”, “‘recursive”, or “error checking”. The kind of a muxedetermines whether it can be lockeding
by a thread that already owns it. The default kindfést”. See pthread_mutexattr_init (3) for more
information on mute attributes.

Variables of type pthread_mutex_t can also be initialized staticallyusing the constants
PTHREAD_MUTEX_INITIALIZER (for fast mutges), PTHREAD_RECURSIVE_MUTEX_INI-
TIALIZER_NP (for recursie mutexes), and PTHREAD_ERRORCHECK_MUTEX_INITIAL-
IZER_NP (for error checking mutes).

pthread_mutex_lock locks the gren mutex. If the mute is currently unlocled, it becomes locked and
owned by the calling thread, apthread_mutex_lockreturns immediatelylf the mute is dready locled
by another threaghthread_mutex_locksuspends the calling thread until the mugeunlocked.

If the mutex is dready locked by the calling thread, the bebmof pthread_mutex_lock depends on the
kind of the mutex. If the mukeis of the ‘fast” kind, the calling thread is suspended until the mise
unlocked, thus déctively causing the calling thread to deadlock. If the mugeof the “error checking’
kind, pthread_mutex_lock returns immediately with the error coEDEADLK . If the mute is of the
“recursve” kind, pthread_mutex_lock succeeds and returns immediatedcording the number of times
the calling thread has loeld the mutex. An equal number gthread_mutex_unlock operations must be

SOSI-Klausur Manual-Auszug 2005-09-08 1

PTHREAD_MUTEX(3) PTHREAD_MUTEX(3)

performed before the muteeturns to the unlocked state.

pthread_mutex_trylock behaes identically topthread_mutex_lock except that it does not block the
calling thread if the museis dready locked by another thread (or by the calling thread in the case of a
“ fast” mutex). Insteadpthread_mutex_trylock returns immediately with the error coHBUSY.

pthread_mutex_unlock unlocks the gien mutex. The mute is assumed to be locked and owned by the
calling thread on entrance tpthread_mutex_unlock If the muta is of the ‘fast” kind,
pthread_mutex_unlock always returns it to the unloekl state. If it is of the'recursive” kind, it decre-
ments the locking count of the mutéhumber ofpthread_mutex_lock operations performed on it by the
calling thread), and only when this count reaches zero is the auitelly unlocked.

On “error checking’ mutexes, pthread_mutex_unlock actually checks at run-time that the muis
locked on entrance, and that it was locked by the same thread that éslfing pthread_mutex_unlock
If these conditions are not met, an error code is returned and the mmoteins unchanged: Fast” and
“recursve” mutexes perform no such checks, thus aling a locked muteto be wlocked by a thread
other than its ownefrhis is non-portable behavior and must not be relied upon.

pthread_mutex_destroydestrys a mut& object, freeing the resources it might hold. The mueist be
unlocked on entrance. In the LinuxThreads implementation, no resources are associated witijectte
thuspthread_mutex_destroyactually does nothing except checking that the ristenlocked.

RETURN VALUE
pthread_mutex_init always returns 0. The other mutéunctions return O on success and a non-zero error
code on error.

ERRORS
Thepthread_mutex_lockfunction returns the following error code on error:

EINVAL
the mute has not been properly initialized.

EDEADLK
the mute is dready locked by the calling thread (“error checkimgutexes anly).

Thepthread_mutex_unlockfunction returns the following error code on error:

EINVAL
the mute has not been properly initialized.

EPERM
the calling thread does not own the mxuteerror checking’mutexes anly).

Thepthread_mutex_destroyfunction returns the following error code on error:

EBUSY
the mute is currently locked.

AUTHOR
Xavier Lergy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_mutexattr_init (3), pthread_mutexattr_setkind_np(3), pthread_cance(3).

SOSI-Klausur Manual-Auszug 2005-09-08 2

soclet(3) sockt(3)
NAME

socket — create an endpoint for communication
SYNOPSIS

cc[flag ...] file ... —Isocket —Insl[library ...]

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain int type int protocol);

DESCRIPTION
socket() creates an endpoint for communication and returns a descriptor.

The domainparameter specifies a communications domain within which communication wilftate;

this selects the protocol family which should be used. The protocol family generally is the same as the
address family for the addresses supplied in later operations on thet. sbbhksedamilies are defined in

the include file<sys/socket.h> There must be an entry in thetconfig4) file for at least each protocol
family and type required. fprotocolhas been specified, but no exact match for the tueityt type, pro-

tocol is found, then the first entry containing the specified family and type with zero for protocol will be
used. Theurrently understood formats are:

PF_UNIX UNIX system internal protocols
PF_INET ARPA Internet protocols

The sockt has the indicatetype which specifies the communication semantics. Currently defined types
are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQRACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliableptway connection-based byte streams. An out-of-
band data transmission mechanism may be suppoite&3DCK_DGRAM soclet supports datagrams (con-
nectionless, unreliable messages of a fixed (typically small) maximum lengtBJ0CK_SEQRACKET
soclet may provide a sequenced, reliablep-tway connection-based data transmission path for datagrams
of fixed maximum length; a consumer may be required to read an entiet péitkeach read system call.
This facility is protocol specific, and presently not implemented fgr motocol family. SOCK_RAW
soclets provide access to internal network irgeels. TheaypesSOCK_RAW, which is aailable only to

the super-useend SOCK_RDM, for which no implementation currently exists, are not described here.

protocolspecifies a particular protocol to be used with theetoddormallyonly a single protocol exists to
support a particular socket type within aegi protocol family. Howeve, multiple protocols may exist, in
which case a particular protocol must be specified in this mafherprotocol number to use is particular
to the “communication domain” in which communication is teetglce. Ifa protocol is specified by the
caller, then it will be packaged into a socketdeoption request and sent to the underlying protocol layers.

Soclets of typeSOCK_STREAM are full-duplex byte streams, similar to pipe# stream socket must be in
aconnectedstate before andata may be sent or reged on it. A connection to another socket is created
with a connec{(3N) call. Once connected, data may be transferred usid(2) andwrite (2) calls or
some variant of theend3N) andrecv(3N) calls. When a session has been completetlpsg2) may be
performed. Out-of-bandlata may also be transmitted as described ors¢he3N) manual page and
receved as a@scribed on theecv(3N) manual page.

The communications protocols used to impleme8D&K_STREAM insure that data is not lost or dupli-
cated. Ifa pece of data for which the peer protocol haffdr space cannot be successfully transmitted
within a reasonable length of time, then the connection is considerezhtanll calls will indicate an error
with =1 returns and witEETIMEDOUT as the specific code in the globariableerrno. The protocols
optionally keep sockets “warm” by forcing transmissions roughigryeminute in the absence of other

SOSI-Klausur Manual-Auszug 2005-09-08 1

soclet(3) sockt(3) stat(2) stat(2)

activity. An error is then indicated if no response can be elicited on an otherwise idle connection for a NAME

extended period (for instance 5 minutes) SIGPIPE signal is raised if a process sends on a broken stream; stat, fstat, Istat — get file status
this causes nee pocesses, which do not handle the signal, to exit. SYNOPSIS

SOCK_SEQRCKET soclets emply the same system calls 89CK_STREAM soclets. Theonly differ- #include <sys/types.h>

ence is thatead(2) calls will return only the amount of data requested, agdemaining in the awving #include <sys/stat.h>

packet will be discarded. #include <unistd.h>

SOCK_DGRAM and SOCK_RAW soclets allav datagrams to be sent to correspondents named in
sendtq3N) calls. Datagrams are generally rege with recvfrom(3N), which returns the next datagram
with its return address.

int stat(const char *file_name struct stat * buf);
int fstat(int filedes struct stat * buf);
int Istat(const char *file_name struct stat * buf);

DESCRIPTION
These functions return information about the specified Y& do ot need ay access rights to the file to
get this information but you need search rights to all directories named in the path leading to the file.

An fentl(2) call can be used to specify a process group toveeesIGURG signal when the out-of-band
data arves. Itmay also enable non-blocking 1/0 and asynchronous notification ofvei@sewith SIGIO
signals.

The operation of sockets is controlled by socketll®ptions These options are defined in the file

<sys/socket.h> setsockopt3N) andgetsockop{3N) are used to set and get options, respaygti stat stats the file pointed to ife_nameand fills inbuf

RETURN VALUES]))] . Istat is identical tostat, except in the case of a symbolic link, where the link itself is stat-ed, not the file that
A —1is returned if an error occurs. Otherwise the return value is a descriptor referencing the socket. it refers to.
ERRORS
Thesoclet() call fails if: fstat is identical tostat, only the open file pointed to Hiledes(as returned bppen(2)) is stat-ed in place
of file_name
EACCES Permission to create a setlof the specified type and/or protocol is denied. -
EMFILE The per-process descriptor table is full.

They al return astatstructure, which contains the following fields:

ENOMEM Insufficient user memory isvailable. struct stat {
ENOSR There were institient STREAMSresources\ailable to complete the opera- dev_t st_de; /* device */

tion. ino_t st_ino; /*inode */
EPROTONOSUPPORT The protocol e or the specified protocol is not supported within this mode_t st_mode; /* protection */

domzfin P P P PP nlink_t st_nlink; /* number of hard links */

' uid_t st_uid; /* user ID of owner */
SEE ALSO gid_t st_gid; /* group ID of owner */

closg?2), fentl (2), ioctl(2), read(2), write (2), accep{(3N), bind(3N), connec{3N), getsocknam¢3N), get- dev t st_rde; /* device type (if inode device) */
sockopi(3N), listen(3N), recv(3N), setsockop(3N), send3N), shutdown(3N), socketpair(3N), off__t st__size; /* total size, in bytes */
attributes(5), in(5), socke(5) blksize_t st_blksize7* blocksize for filesystem 1/O */

blkent_t st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */
k
The \aluest_sizegives the size of the file (if it is a regular file or a symlink) in bytes. The size of a symlink
is the length of the pathname it contains, without trailing NUL.

The \aluest_blockggives the size of the file in 512-byte blocks. (This may be smallershasizé512 e.g.
when the file has holes.) Thaluest_blksizegives the "preferred” blocksize for efficient file system I/O.
(Writing to a file in smaller chunks may cause an inefficient read-modify-rewrite.)

Not all of the Linux filesystems implement all of the time fields. Some file system typeswailenting in
such a way that file accesses do not cause an updatesofdtimefield. (See ‘noatime’ imount(8).)

The fieldst_atimeis changed by file accesses, e.gekgcvé2), mknod(2), pipe(2), utime(2) andread(2)
(of more than zero bytes). Other routines, hik@ap(2), may or may not updagt_atime

The fieldst_mtimes changed by file modifications, e.g. tmknod(2), truncate(2), utime(2) andwrite (2)

(of more than zero bytesMoreover, st_mtimeof a directory is changed by the creation or deletion of files
in that directory Thest_mtimefield isnotchanged for changes in owngroup, hard link count, or mode.

SOSI-Klausur Manual-Auszug 2005-09-08 2 SOSI-Klausur Manual-Auszug 2005-09-08 1

stat(2)

stat(2)

The fieldst_ctimeis changed by writing or by setting inode information (i.ewner, group, link count,
mode, etc.).

The following POSIX macros are defined to check the file type:

S_ISREG(m) ist a regular file?

S_ISDIR(m) directory?

S_ISCHR(m) charactetevice?

S_ISBLK(m) blockdevice?

S_ISFIFO(m) fifo?

S_ISLNK(m) symbolidink? (Not in POSIX.1-1996.)

S_ISSOCK(m) soakt? (Not in POSIX.1-1996.)
The following flags are defined for tee_ moddield:

S_IFMT 0170000 bitmask for the file type bitfields
S_IFSOCK 0140000 soek

S_IFLNK 0120000 symbolic link

S_IFREG 0100000 regular file

S_IFBLK 0060000 block device

S_IFDIR 0040000 directory

S_IFCHR 0020000 character device

S_IFIFO 0010000 fifo

S_ISUID 0004000 set UID bit

S_ISGID 0002000 set GID bit (see below)
S_ISVTX 0001000 sticky hit (see below)

S_IRWXU 00700 mask for file owner permissions
S_IRUSR 00400 owner has read permission
S_IWUSR 00200 owner has write permission
S_IXUSR 00100 owner has recute permission
S_IRWXG 00070 mask for group permissions
S_IRGRP 00040 group has read permission
S_IWGRP 00020 group has write permission
S_IXGRP 00010 group has xecute permission
S_IRWXO 00007 mask for permissions for others (not in group)
S_IROTH 00004 otherdiave read permission
S_IWOTH 00002 otherdave write permisson
S_IXOTH 00001 others hae exeute permission

The set GID bit (S_ISGID) has\ezal special uses: For a directory it indicates that BSD semantics is to be
used for that directory: files created there inherit their group ID from the direntdrfrom the efective
group ID of the creating process, and directories created there will also get the S_ISGIDHuk adile

that does not he the group recution bit (S_IXGRP) set, it indicates mandatory file/record locking.

The ‘sticky’ bit (S_ISVTX) on a directory means that a file in that directory can be renamed or deleted only
by the owner of the file, by the owner of the directangl by a privileged process.

RETURN VALUE

On success, zero is returned. On grrdris returned, an@rrnois set appropriately.

SEE ALSO

chmod(2), chown(2), readlink (2), utime(2), capabilities(7)

SOSI-Klausur Manual-Auszug 2005-09-08 2

strerror(3) strerror(3)

NAME
strerror strerror_r — return string describing error code

SYNOPSIS
#include <string.h>

char *strerror(int errnum);
int strerror_r(int errnum char *buf, size_tn);

DESCRIPTION
The strerror() function returns a string describing the error code passed inghmanterrnum possibly
using the LC_MESSAGES part of the current locale to select the appropriate langh#&yetring must
not be modified by the application, but may be modified by a subsequentpmitdg) or strerror() . No
library function will modify this string.

The strerror_r() function is similar tostrerror() , but is thread safe. It returns the string in the ssgr
plied bufferbuf of lengthn.

RETURN VALUE
Thestrerror() function returns the appropriate error description string, or an unknown error message if the
error code is unknen. Thevalue oferrnois not changed for a successful call, and is set to a noraie® v
upon error Thestrerror_r() function returns 0 on success and -1 on failure, sestimp.

ERRORS
EINVAL
The value ofrrnumis not a valid error number.

ERANGE
Insufficient storage was supplied to contain the error description string.

CONFORMING TO
SVID 3, POSIX, BSD 4.3, ISO/IEC 9899:1990 (C89).
strerror_r() with prototype as gen above is pecified by SUSv3, andag in use under Digital Unix and
HP Unix. An incompatible function, with prototype

char *strerror_r(int errnum char *buf, sze_tn);

is a GNU atension used by glibc (since 2.0), and must lgerded as obsolete in wieof SUSv3. The
GNU version maybut need not, use the usarpplied loffer. If it does, the result may be truncated in case
the supplied buffer is too small. The result isals NUL-terminated.

SEE ALSO
errno(3), perror (3), strsignal(3)

SOSI-Klausur Manual-Auszug 2005-09-08 1

