30-Multiprozessor _en

O

System-Level Programming

30 Multiprocessors

Peter Wigemann

Lehrstuhl fiir Informatik 4
Systemsoftware

Friedrich-Alexander-Universitat
Erlangen-Niirnberg (FAU)

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

http://sys.cs.fau.de/lehre/ss25

Multiprozessor en

30-M

O

Processes

Multiple processes for structuring of solutions

Tasks of an application can be modeled easier when divided into
multiple cooperating subprocesses
m e.g., applications with multiple windows (one process per window)
m e.g., applications with many concurrent tasks (web browser)
m e.g., client server applications;

for each request a new process gets started (web server)

Multiprocessor systems can only be used efficiently with multiple
processes running in parallel
m in the past this was only viable for high-performance computers

(aerodynamics, weather prediction)
= with today’'s multi-core systems very common

© klsw System-Level Programming (ST 25) 30 Multi Processors — Multiprocessors 30-1

30-Multiprozessor _en

Example: Computing of Weather Map

m Computation of a weather map has to be as fast as possible

Q.em:k@
&m/ N7

17}; 2

Source: www.wetterdienst.de

m Approach: multiple processes compute distinct parts of the map

O © klsw System-Level Programming (ST 25) 30 Multi Processors — Multiprocessors 30-2

Example: Computing of Weather Map (2)

B E.g., computation of a weather map split up between 4 processors:
CPUO CPU1

CPU2 CPU 3

B All processes access a shared memory area for computing the result

30-Multiprozessor _en

O © klsw System-Level Programming (ST 25) 30 Multi Processors — Multiprocessors 30-3

Processes with Shared Memory

B Use of shared memory by multiple processes

char *ptr = mmap(NULL, NBYTES, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS, -1, 0);
if (ptr == MAP_FAILED) ... // Error

for (i = 0; i < NPROCESSES; i++) {
pid[i] = fork();
switch (pld[l]) {
case -1: ... // Error
case 0:
do_work(i, ptr);
_exit(0);
default:;
}

}
) for (i = 0; i < NPROCESSES; i++) {
o ret = waitpid(pid[i], NULL, 0);

if (ret < 0) ... // Error
}
= ret = munmap(ptr, NBYTES);
3 if (ret < 0) ... // Error

O © klsw System-Level Programming (ST 25) 30 Multi Processors — Multiprocessors 30-4

Example: Length of a Vector

m Calculation of the length/norm of a vector with N elements in one
process:
#include <math.h>
double
veclen(double vec[])

{
double sum = 0.0;
for (int 1 = 0; 1 < N; i++) {
sum += vec[i] * vec[i];
}

return sqrt(sum);

o]
a
a
4]
N
o

© klsw System-Level Programming (ST 25) 30 Multi Processors — Multiprocessors 30-5

Example: Length of a Vector (2)

m Compute of the length/norm of a vector with N elements with 4
processes:

double veclen(double vec[]) {
pid_t pid[4];
double *ptr = mmap(NULL, 4096, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS, -1, 0);
for (int p = 0; p < 4; p++) {
if ((pid[p] = fork()) == 0) {
double sum = 0.0;
for (int i =px N/ 4; i< (p+1) xN/ 4; i++)
sum += vec[i] * vec[il];
ptripl = sum;
_exit(0);
}
}
< for (int p = 0; p < 4; p++)
. waitpid(pid[p]l, NULL, 0);
double sum = 0.0;
for (int p = 0; p < 4; p++)
sum += ptrlpl;
munmap (ptr, 4096);
return sqrt(sum);

O © klsw System-Level Programming (ST 25) 30 Multi Processors — Multiprocessors 30-6

Multiprozessor _en

30-

Example: Length of a Vector (3)

B Note that example is incomplete

m #include instructions missing

m error handling missing

LI
® Nonetheless, example illustrates

® programming is more complex

m program structure less straight-forward

m parallel algorithm is harder to understand
B Benefits can be unintuitive

= Significant overhead expenses for forking processes
= The additional overhead for forking is only beneficial for very large

vectors, that is, for values of N greater than 100000 (depending on the

actual machine)

O © klsw System-Level Programming (ST 25) 30 Multi Processors — Multiprocessors

30-7

en

Multiprozessor

30-

O © klsw System-Level Programming (ST 25) 30 Multi Processors — Multiprocessors 30-8

Processes with Shared Memory (2)

Advantage of the solution above: in multiprocessor systems,
physically parallel execution is possible

BUT

each process needs its own resources
memory mapping

permissions

open files

root and working directory

= creation, termination, and switching of processes is
expensive

	30 Multi Processors
	Multiprocessors

