
System-Level Programming

27 Programs and Processes

Peter Wägemann

Lehrstuhl für Informatik 4
Systemsoftware

Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

27
-P

ro
ze

ss
e_

en

http://sys.cs.fau.de/lehre/ss25


Overview

Multiple Programs that

run concurrently,
are dynamically
started/stopped,

control their environment

via defined I/O functions.
Source: www.wikipedia.org

Each running program gets hardware assigned:

CPU (time shares)

memory (parts of the main memory)

. . . and can call operating-system–kernel functions

© klsw System-Level Programming (ST 25) 27 Programs and Processes – Overview 27–1

27
-P

ro
ze

ss
e_

en



Definitions

Program: set of instructions

Process: running program and its data

Hint: one program can be in execution multiple times (e.g., PDF
viewer)!

© klsw System-Level Programming (ST 25) 27 Programs and Processes – Processes 27–2

27
-P

ro
ze

ss
e_

en



Processes

Definition “process”: running program with its data

Different point of view:

microcontroller process UNIX-/Windows/... process

processor time shares of the physical processor
memory virtual memory

interrupts signals
I/O devices I/O operating-system functions

© klsw System-Level Programming (ST 25) 27 Programs and Processes – Processes 27–3

27
-P

ro
ze

ss
e_

en



Processes (2)

Multi-program operation (“multitasking”)
multiple processes can be executed virtually simultaneously
if there are less processors then there are running processes, time shares
for using a processor are given to the processes: time-sharing system
the OS kernel the decides which process receives how much computing
time: scheduling
the switch between processes takes place by the OS kernel: dispatching
running processes do not know at which point a subsequent process is
dispatched

© klsw System-Level Programming (ST 25) 27 Programs and Processes – Processes 27–4

27
-P

ro
ze

ss
e_

en



Process States

A process is always in one of the following states

New (or created):
Process has been created but does not have all necessary
resources to run

Ready:
Process has all necessary resources (except CPU) and is ready for
execution/running

Running:
Process is executed by a physical processor

Waiting (or blocked):
Process waits for an event (completion of an I/O operation)

Terminated:
Process is terminated but not all of its resources are yet freed

© klsw System-Level Programming (ST 25) 27 Programs and Processes – Processes 27–5

27
-P

ro
ze

ss
e_

en



Process States (2)

State diagram with transitions:

New/Created

Ready

Waiting/Blocked

Running

Terminated

admitted

scheduler assigns processor

interrupt

exit call

blocking callblocking condition ends

© klsw System-Level Programming (ST 25) 27 Programs and Processes – Processes 27–6

27
-P

ro
ze

ss
e_

en



Context Switch

Each process has a context (i.e., its state)
contents of processor registers
contents of memory areas
open files, current directory, ...

When switching a process (context switch)
the contents of the processor registers are saved,
a new process is selected,
the execution environment for the new process is established

reprogramming of the MMU
change of the open files and current working directory, ...

the stored registers of the new process are loaded

© klsw System-Level Programming (ST 25) 27 Programs and Processes – Processes 27–7

27
-P

ro
ze

ss
e_

en



Context Switch

control flow of two processes in user mode and kernel

© klsw System-Level Programming (ST 25) 27 Programs and Processes – Processes 27–8

27
-P

ro
ze

ss
e_

en



Process Control Block

Process Control Block (PCB)

Data structure of the kernel that contains all necessary data for a
process.

Example UNIX:
process ID (PID)
process state (running, ready, ...)
register
memory mapping
owner (UID, GID)
root directory, working directory
open files
...

© klsw System-Level Programming (ST 25) 27 Programs and Processes – Processes 27–9

27
-P

ro
ze

ss
e_

en


	27 Programs and Processes 
	Overview 
	Processes 


