26-Dateisystem-Unix__en

O

System-Level Programming

26 File Systems — UNIX

Peter Wigemann

Lehrstuhl fiir Informatik 4
Systemsoftware

Friedrich-Alexander-Universitat
Erlangen-Niirnberg (FAU)

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

http://sys.cs.fau.de/lehre/ss25

File System — Example Linux/UNIX

26-Dateisystem-Unix__en

File

m simple, unstructured set of bytes

m arbitrary content; content is transparent for the operating system
m can be dynamically extended

File attributes

m the operating system manages a set of attributes for each file
(permissions, size, time of access, data blocks, ...)

m the attributes are saved in a special management structures, called the
file header
— Linux/UNIX: Inode
— Windows NTFS: Master File Table entry

Namespace

= flat namespace: inodes are enumerated
= hierarchical namespace: directory structure maps the file and path
names to the inode numbers

O © KIsw ystem-Level Programming (ST 25) © File Systems — UNIT — File System — Example Tinux/UNT

26-1

26-Dateisystem-Unix__en

File-System Structure

m Structure on medium (simplified)

Size of ablock Number of data blocks

Number of inodes

Magic| 512 [4096]30000].... il1Joli[olo[i 1ol olofi]

[ohlelt el [olold]

[1lobfolol] ... [[ofafolefi] -

Superblock Bit list of Bit list of

used inodes used data blocks

int

1. main(void)

Type|Dir Type|Regular 1. {

Blocks|1,0, 0 Blocks|3, 4,0 | 4| test.c
Length|64 Length|520 R Rttt }

1 2 3 4 4096, 1 2 3 4 30000,

Inodes

Data blocks

B mkfs creates an empty structure; fsck verifies the structure

O © KIsw ystem-Level Programming (ST 25)

© File Systems — UNIT

— File System — Example Tinux/UNT
2

Path Names

B Tree structure

Root directory

Current
directory

Paths

m e.¢g., /home/adam/datei, /tmp, ../adam/datei

m / represents separator (forward slash)

= beginning / stands for the root directory; else, implicit start in the
current working directory

26-Dateisystem-Unix__en

0 ©OKsw _ System-Level Programming (ST 25) 76 File Systems — UNTX — File System — Example Lintx/ONTX
26-3

26-Dateisystem-Unix__en

Path Names (2)

m Actual “tree structure”

. . . 17 .
60
root directory: 2
o current directory: 77

Example, resolving the path “../adam/datei™
m /7 +"../adam/datei” ~ 25 + “adam/datei”

m 25 + “adam/datei” ~ 98 + “datei”

= 98 + “datei” ~ 60

0 O KSswW __ System-Level Programming (S 1 25) 76 File Systems — UNTX — File System — Example Linux, Q%NLX

26-Dateisystem-Unix__en

Path Names (3)

There can exist multiple references (hard links) to the same file:

. 60 ..

current directory: 25

Example, resolving the path “adam/datei’:

m 25 + "adam/datei” ~ 98 + “datei”
= 98 + "datei” ~ 60

Example, resolving the path “eva/test™

m 25 + “eva/test” ~ 77 + “test”
m 77 + "test” ~ 60

A file is deleted, if no more references exist that refer to it.

0 ©OKsw _ System-Level Programming (ST 25) 76 File Systems — UNTX — File System — Example Lintx/ONTX
26-5

26-Dateisystem-Unix__en

Path Names (4)

There can exist multiple symbolic references (symbolic links) to a
file or directory:

. 60 ..

current directory: 25

99

/adam/file

./adam/file

Example, resolving the path “eva/test”:

m 25 + “eva/test” ~ 77 + “test”

m 77 + “test” ~ 99 ~ 77 + “../adam/datei”
m 77 +"../adam/datei” ~ 25 + “adam/datei”
m 25 + “adam/datei” ~ 98 + “datei”

m 98 + “datei” ~ 60

A symbolic name persists even if the file or directory does not yet
exist or does not longer exist.

0 © KIsw System-Level Programming (ST 25) 20 File Systems — UNIX_— File System — Example Cinux/UNTX
266

Owners and Permissions

26-Dateisystem-Unix__en

Owner

m Each owner is represented by a unique user identification number (UID).

m A user can belong to one or more user groups, each of which is
represented by a unique group identification number (GID).

= A file or directory is mapped to exactly one user and one group.

Permissions on files

= Read, write, execute (only by the owner)
m Can be individually modified for the owner, for members of the group or
for all others.

Permission on directories

m Read, write (creating and deleting of files/directories), right of
pass-through
= Write permission can be restricted for each file individually.

O © KIsw ystem-Level Programming (ST 25) © File Systems — UNIT — File System — Example Tinux/UNT
2

Inodes

B Attributes (permissions, owners, etc.) of a file, or of a directory are
stored in the so called inodes (simplified):

int st_mode; /* type and permissions x*/

int st_nlink; /* number of Hard Links x/

int st_uid; /* owner x/

int st_gid; /* group x/

long st_size; /* length of the file in bytes x/

int st_block[...]; /*x list of the (indirect) blocks x*/
time_t st_atime; /* last time of reading */

time_t st_mtime; /* last time of modification x/
time_t st_ctime; /* last change of attributes x*/

m File system assigns each inode a number and a storage
location (disk/partition):

int st_ino; /* inode number x/
int st_dev; /* Disk/partition number x/

26-Dateisystem-Unix__en

O © KIsw ystem-Level Programming (ST 25) © File Systems — UNIT — File System — Example Tinux/UNT
2

Programming Interface for Inodes

26-Dateisystem-Unix__en

stat, lstat return file attributes from an inode

Function interface:

#include <sys/types.h>
#include <sys/stat.h>
int stat(const char *path, struct stat xbuf);
int Ustat(const char *path, struct stat *buf);

Arguments:

m path: path name

m buf: pointer to a buffer, which will be filled with the information from
the inode

Return value:

s 0if OK

m -1 if an error occurred (errno variable contains error number)
Example:

struct stat buf;

stat("/etc/passwd", &buf); /+ Error handling...! x/

printf("Number of the inode: %d\n", buf.st_ino);

O © KIsw ystem-Level Programming (ST 25) © File Systems — UNIT — File System — Example Tinux/UNT
2

Programming Interface for Directories

® Handling links or directories
= Creating (an empty directoy)
int mkdir(const char *path, mode_t mode);

Deleting (an empty directory)
int rmdir(const char *path);

Creating a hard link
int link(const char *xexisting, const char x*new);

Creating a symbolic link
int symlink(const char xexisting, const char *new);

Deleting a link (and possibly the file)
int unlink(const char xpath);

Reading a symbolic link
int readlink(const char xpath, char *buf, int size);

26-Dateisystem-Unix__en

O © KIsw ystem-Level Programming (ST 25) © File Systems — UNIT — File System — Example Tinux/UNT
2

Programming Interface for Directories (2)

26-Dateisystem-Unix__en

Reading directories (interface of the Linux kernel)
= open(2), getdents(2), close(2)

m Linux-specific

Reading directories (interface of the C library)

= Opening a directory
DIR *opendir(const char xpath);

= Reading an entry
struct dirent xreaddir(DIR x*dirp);

m Closing a directory
int closedir(DIR *dirp);

m Structure struct dirent (simplified)
struct dirent {
int d_ino; /* Number of the inode */
char d_name[NAME_MAX + 1]; /* Name x*/
b

O © KIsw ystem-Level Programming (ST 25) © File Systems — UNIT — File System — Example Tinux/UNT
2 1

Directories (3): opendir/closedir

m Function interface:

#include <sys/types.h>
#include <dirent.h>

DIR xopendir(const char xpath);
int closedir(DIR *dirp);

m Argument of opendir:
m path: name of the directory
m Return value of opendir:

= Pointer to a structure of type DIR if OK
m NULL if an error occurred (errno variable contains error number)

26-Dateisystem-Unix__en

O © KIsw ystem-Level Programming (ST 25) © File Systems — UNIT — File System — Example Tinux/UNT
26-12

26-Dateisystem-Unix__en

Directories (4): readdir

® Function interface:
#include <sys/types.h>
#include <dirent.h>

struct dirent xreaddir(DIR *dirp);

B Argument:
= dirp: pointer to DIR data structure
m Return value:
= Pointer to data structure of type struct dirent, if OK
= NULL, if directory has been written entirely (errno-variable remains
unchanged)
m NULL, if an error occurred (errno variable contains error number)
m Note: The memory for struct dirent can possibly be overwritten
by the next readdir call!

O © KIsw ystem-Level Programming (ST 25) © File Systems — UNIT — File System — Example Tinux/UNT
2

26-Dateisystem-Unix__en

Directories (5): Example

m Output all file names in the current directory ("."):

#include <sys/types.h>
#include <dirent.h>

DIR *dirp;
struct dirent xde;
int ret;

dirp = opendir(".");
if (dirp == NULL)

while (1) {
errno = 0;
de = readdir(dirp);
if (de == NULL && errno !'= 0)
if (de == NULL) break;

printf("%s\n", de->d_name);

}
ret = closedir(dirp);
if (ret < 0)

//
//

//

. //

//

//
//

opening cur. dir
error

reading entry
error
end reached

closing directory
error

O © KIsw ystem-Level Programming (ST 25)

© File Systems — UNT — File System — Example Tinux/UNT
26-14

Programming Interface for Files

m Function interface:

#include <sys/types.h>
#include <fcntl.h>

int open(const char *path, int flags, ...);
int close(int fd);

ssize t read(int fd, void xbuf, size t count);
ssize_t write(int fd, const void xbuf, size_t count);

26-Dateisystem-Unix__en

O © KIsw System-Level Programming (ST 25) © File Systems — UNIT — File System — Example Tinux/UNT
2

Files (2): Example

m Copy program
#include <fcntl.h>

int ret;

int src_fd = open("src", O_RDONLY);

if (src_fd < 0) ... // error

int dst_fd = open("dst", O_CREAT | O_TRUNC | O_WRONLY, 0777);
if (dst_fd < 0) ... // error

while (1) {

char buf[1024];

len = read(src_fd, buf, sizeof(buf));
if (len < 0) ... // error
if (len == 0) break;

ret = write(dst_fd, buf, len);

if (ret < 0) ... // error
}
ret = close(dst_fd);
if (ret <0) ... // error
ret = close(src_fd);
if (ret < 0) ... // error

O © KIsw ystem-Level Programming (ST 25) © File Systems — UNIT — File System — Example Tinux/UNT
26

26-Dateisystem-Unix__en

Files (3)

m A call to the write function has to

verify the file descriptor whether file is opened and/or writable

verify the length and address of the buffer

determine the block(s) of the medium which have to be written to

read the block(s) from the medium (unless the whole block needs to be
written)

overwrite the required bytes in the block(s)

m transfer the block(s) back to the medium

= modify the attributes (last change, length of the file)

write is therefore a system call

= write is a costly operation, (read analogously)!

= Improvement: read/write many bytes at once (ideally: multiples
of the block size)

m = Use fopen, fclose, fread, fwrite, getchar, putchar, fscanf,
fprintf, ... functions from the C library!

O © KIsw ystem-Level Programming (ST 25) © File Systems — UNT — File System — Example Tinux/UNT
26-17

26-Dateisystem-Unix__en

O © KIsw ystem-Level Programming (ST 25) © File Systems — UNIT — File System — Example Tinux/UNT
2

Special Files

Peripheral devices (disks, printers, CD, terminal, scanner, ...) are
represented as special files (/dev/sda, /dev/1p0@, /dev/cdromo,

/dev/tty, ...)
Their inode contains
= Type:

- Block-oriented devices (drives, CD, DVD, SSD, ...)
- Character-oriented devices (printer, terminal, scanner, ...)

= |nstead of block numbers:

- Major number: type of the device (disk, printer, ...)
— Minor number: number of the device (3 printer, 5™ terminal, ...)

Opening a device creates a possibly exclusive connection to the
device, provided by drivers

Devices can be accessed with read, write, and ioctl operations

26-Dateisystem-Unix__en

Special Files (2): Example

m Output to a printer

#include <linux/1lp.h>
int fd, ret;

/* Establish connection to printer 0. */
fd = open("/dev/1p0", O_WRONLY);
if (fd < 0) :

/* Get status of the printer. x*/
ret = ioctl(fd, LPGETSTATUS, &state);
if (ret < 0) ...
if (state & LP_POUTPA) {
fprintf(stderr, "Out of paper!\n"); exit(1l);

/* Write to the printer. */
ret = write(fd, "Hallo, Drucker!\n\f", 17);
if (ret < 0)

/* Close connection. x/
ret = close(fd);
if (ret < 0)

O © KIsw ystem-Level Programming (ST 25) © File Systems — UNIT — File System — Example Tinux/UNT
2

Partitions

m Each disk can contain a file system as a whole
= the disk then corresponds to a single partition
B However, each disk can be divided into multiple partitions

m first block of the disk contains partition table
m partition table contains information about

- how many partitions exist
- how large these partitions are
- where they start
m Each partition
m is represented by a special file; e. g.,

- /dev/sda, /dev/sdb (whole disk)
- /dev/sdal, /dev/sda2, /dev/sdbl (parts of the disk)

m contains a single file system

26-Dateisystem-Unix__en

O © KIsw ystem-Level Programming (ST 25) © File Systems — UNIT — File System — Example Tinux/UNT
2

26-Dateisystem-Unix__en

Partitions (2)

m Trees for each partition can be combined to a single homogeneous
file tree (boundaries not visible for the user!)

= “mounting” of file trees

B A single specified file system is the root file system, whose root
directory is the root directory for the whole system
m Other file systems can be mounted to the existing file system with the
mount operation and removed from it with the umount operation.
= With the help of network file system (NFS) even directories of other
computers can be mounted to the local file system.
= “hidden” boundaries between file systems of different computers

O © KIsw ystem-Level Programming (ST 25) © File Systems — UNIT — File System — Example Tinux/UNT
2 1

26-Dateisystem-Unix__en

Mounting to the File Tree

m Example

/dev/sdal

mount /dev/sda3 /home

Root File System

/dev/sda3

0 © KIsw System-Level Programming (ST 25)

20 File Systems — UNIX_— File System — Example Linux/ONTX
26-22

Mounting to the File Tree (2)

m After execution of the mount operation

Mount point

26-Dateisystem-Unix__en

0 ©OKsw _ System-Level Programming (ST 25) 76 File Systems — UNTX — File System — Example LintxX7ONTX
26-23

	26 File Systems – UNIX
	File System – Example Linux/UNIX

