
System-Level Programming

22 Supplements: In-/Output

Peter Wägemann

Lehrstuhl für Informatik 4
Systemsoftware

Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

22
-M

is
c-

IO
_

en

http://sys.cs.fau.de/lehre/ss25


Input/Output

I/O functionality is not part of the programming language
Realized by “normal” (library) functions

part of the standard library
simple programming interface
efficient
portable
close to the operation system

Features
open/close files
read/write single characters, lines, or arbitrary blocks of data
formatted input/output

© klsw System-Level Programming (ST 25) 22 Additions – In-/Output – Input/Output 22–1

22
-M

is
c-

IO
_

en



Standard Input/Output

Every C program has three I/O channels, assigned automatically
upon starting:
stdin: standard input

usually connected to the keyboard
“end of file” (EOF) gets signaled by input of CTRL-D at the begin
of a line
this can be redirected to a file upon calling the program
~> prog < inputfile

stdout: standard output
usually connected to the display (or the window from which the
program was started)
this can be redirected to a file upon calling the program
~> prog > outputfile

stderr: output channel for error messages
usually also connected to the display

© klsw System-Level Programming (ST 25) 22 Additions – In-/Output – Input/Output 22–2

22
-M

is
c-

IO
_

en



Standard Input/Output (continued)

Pipes
The standard output of a program can be connected with the standard
input of another program:
~> prog1 | prog2

The redirection of the standard I/O channels is invisible for the called
program.

Automatic buffering
Input from the keyboard is usually buffered line-by-line by the operating
system and only passed to the program when a NEWLINE symbol (’\n’)
occurs!
Output for the display is usually buffered line-by-line by the program and
only written to the display when a NEWLINE symbol occurs!

© klsw System-Level Programming (ST 25) 22 Additions – In-/Output – Input/Output 22–3

22
-M

is
c-

IO
_

en



Opening and Closing Files

Besides the standard I/O channels, a program can open further I/O
channels

access to files

Opening an I/O channel
function fopen (file open)

Closing an I/O channel
function fclose (file close)

© klsw System-Level Programming (ST 25) 22 Additions – In-/Output – Input/Output 22–4

22
-M

is
c-

IO
_

en



Opening and Closing Files (continued)

Interface fopen
#include <stdio.h>

FILE *fopen(const char *name, const char *mode);

name: path name of the file to be opened
mode: mode, how the file has to be opened

”r”: read
”w”: write
”a”: write at the end of the file (append)
”rw”: read and write
opens file name
result of fopen: pointer to a data type FILE that describes a file
channel; on error NULL

© klsw System-Level Programming (ST 25) 22 Additions – In-/Output – Input/Output 22–5

22
-M

is
c-

IO
_

en



Opening and Closing Files (continued)

Interface fclose
#include <stdio.h>

int fclose(FILE *fp);

closes I/O channel fp
result is either 0 (no errors) or EOF if an error occured

© klsw System-Level Programming (ST 25) 22 Additions – In-/Output – Input/Output 22–6

22
-M

is
c-

IO
_

en



Opening and Closing Files – Example

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp; int ret;

fp = fopen("test.dat", "w"); /* Open "test.dat" for writing. */
if (fp == NULL) {

/* Error */
perror("test.dat"); /* Print error message. */
exit(EXIT_FAILURE); /* Terminate program. */

}

... /* Program can now write to file "test.dat". */

ret = fclose(fp); /* Close file. */
if (ret == EOF) {

/* Error */
perror("test.dat"); /* Print error message. */
exit(EXIT_FAILURE); /* Terminate program. */

}
return EXIT_SUCCESS;

}

© klsw System-Level Programming (ST 25) 22 Additions – In-/Output – Input/Output 22–7

22
-M

is
c-

IO
_

en



Reading and Writing single Characters

Reading a single character

from standard input
#include <stdio.h>
int getchar(void);

from a file
#include <stdio.h>
int fgetc(FILE *fp);

read the next character
return the character as int value
return EOF at the end of file or when CRTL-D is pressed

Writing a single character

to the standard output
#include <stdio.h>
int putchar(int c);

into a file
#include <stdio.h>
int fputc(int c, FILE *fp);

write the character c
return EOF in case of an error

© klsw System-Level Programming (ST 25) 22 Additions – In-/Output – Input/Output 22–8

22
-M

is
c-

IO
_

en



Reading and Writing single Characters – Example

Copy program:
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
FILE *src, *dst;
int c;

if (argc != 3) { ... }

if ((src = fopen(argv[1], "r")) == NULL) { ... }
if ((dst = fopen(argv[2], "w")) == NULL) { ... }

while ((c = fgetc(src)) != EOF) {
if (fputc(c, dst) == EOF) { ... }

}

if (fclose(dst) == EOF) { ... }
if (fclose(src) == EOF) { ... }

return EXIT_SUCCESS;
}

© klsw System-Level Programming (ST 25) 22 Additions – In-/Output – Input/Output 22–9

22
-M

is
c-

IO
_

en



Reading and Writing Line-by-Line

Reading one line
#include <stdio.h>
char *fgets(char *buf, int bufsize, FILE *fp);

reads characters from the file channel fp into the char array buf until
either bufsize-1 characters have been read or ’\n’ or EOF
s (returned string) gets terminated by ’\0’ (’\n’ does not get
removed)
returns NULL on EOF or when an error occurs
for fp, stdin can be used to read from the standard input

Writing one line
#include <stdio.h>
int fputs(char *buf, FILE *fp);

writes the characters from the array s to the file channel fp
returns EOF when an error occurs
for fp stdout or stderr can be used

© klsw System-Level Programming (ST 25) 22 Additions – In-/Output – Input/Output 22–10

22
-M

is
c-

IO
_

en



Formatted Output

Interface
#include <stdio.h>
int printf(char *format, ...);
int fprintf(FILE *fp, char *format, ...);
int sprintf(char *buf, char *format, ...);
int snprintf(char *buf, int bufsize, char *format, ...);

The parameters given instead of ... are outputted according to the
specifications in the format string

when using printf to the standard output channel
when using fprintf to the file channel fp
(fp can be substituted by stdout or stderr)
sprintf writes the output into the char-array buf
(but does not consider the length of the array ⇒ buffer overflow
possible!)
snprintf works analogously, but writing at most bufsize characters
(bufsize therefore should not be greater than the size of the array!)

© klsw System-Level Programming (ST 25) 22 Additions – In-/Output – Input/Output 22–11

22
-M

is
c-

IO
_

en



Formatted Output (continued)

Characters in the format string have different meanings
normal (printable) characters:
are copied to the output
escape characters:
e. g., \n or \t are substituted by the corresponding characters in the
output (here: new line or tabulator)
format instructions:
start with % character and describe, how the corresponding parameter in
the list after the format string has to be interpreted

For more specific information refer to the manuals
(man 3 printf, ...)

© klsw System-Level Programming (ST 25) 22 Additions – In-/Output – Input/Output 22–12

22
-M

is
c-

IO
_

en



Formatted Output (continued)

Format-instructions
%d, %i: output int parameter as a decimal number
%ld, %li: correspondingly for long int

%f: output float parameter as floating point number
(e. g., 13.153534)

%lf: correspondingly for double

%e: output float parameter as a floating point number with
powers of 10 (e. g., 2.71456e+02)

%le: correspondingly for double

%c: output char parameter as single character
%s: output char array until ’\0’ is reached

%%: output a % character

...: ...

© klsw System-Level Programming (ST 25) 22 Additions – In-/Output – Input/Output 22–13

22
-M

is
c-

IO
_

en



Formatted Output – Example

int day = 25;
int month = 6;
int year = 2009;
char *name = "Michael Jackson";
printf("On %d/%d/%d\n%s died.\n",

month, day, year, name);

printf("\n");

double pi = asin(1.0) * 2.0;
double e = exp(1.0);
fprintf(stdout,

"Important value are:\n");
fprintf(stdout,

"pi=%lf and e=%lf\n", pi, e);

~> ./test
On 6/25/2009
Michael Jackson died.

Important value are:
pi=3.141593 and e=2.718282
~>

© klsw System-Level Programming (ST 25) 22 Additions – In-/Output – Input/Output 22–14

22
-M

is
c-

IO
_

en



Formatted Input

Interface
#include <stdio.h>

int scanf(char *format, ...);
int fscanf(FILE *fp, char *format, ...);
int sscanf(char *buf, char *format, ...);

Format string analogously works to the formatted output.
For more specific information, read the manuals (man 3 scanf, ...).

But: since values have to be read, pointers to the variables have to
be passed to the functions (mimic call-by-reference semantics with
C’s call-by-value approach)!

© klsw System-Level Programming (ST 25) 22 Additions – In-/Output – Input/Output 22–15

22
-M

is
c-

IO
_

en



Formatted Input – Example

double pi, e;
int ret;

ret = scanf("pi=%lf, e=%lf\n", &pi, &e);
if (ret != 2) {

fprintf(stderr, "Bad input!\n");
exit(EXIT_FAILURE);

}
printf("I got\n\tpi=%lf\n\te=%lf\n", pi, e);

~> ./test
3.14 2.718
Bad input!
~>

~> ./test
pi=3.14, e=2.718
I got

pi=3.140000
e=2.718000

~>

© klsw System-Level Programming (ST 25) 22 Additions – In-/Output – Input/Output 22–16

22
-M

is
c-

IO
_

en


	22 Additions – In-/Output 
	Input/Output 


