22-Misc-IO_en

O

System-Level Programming

22 Supplements: In-/Output

Peter Wdagemann

Lehrstuhl fiir Informatik 4
Systemsoftware

Friedrich-Alexander-Universitat
Erlangen-Niirnberg (FAU)

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

http://sys.cs.fau.de/lehre/ss25

22-Misc-IO_en

Input/Output

m |/O functionality is not part of the programming language
m Realized by “normal” (library) functions

part of the standard library

simple programming interface

efficient

portable

close to the operation system

m Features
= open/close files
m read/write single characters, lines, or arbitrary blocks of data
= formatted input/output

O © klsw System-Level Programming (ST 25) 22 Additions — In-/Output — Input/Output

22-1

Standard Input/Output

Every C program has three /O channels, assigned automatically

upon starting:
stdin: standard input
m usually connected to the keyboard

m ‘“end of file" (EOF) gets signaled by input of CTRL-D at the begin

of a line
m this can be redirected to a file upon calling the program

~> prog < inputfile

stdout: standard output
usually connected to the display (or the window from which the

program was started)
m this can be redirected to a file upon calling the program

~> prog > outputfile

stderr: output channel for error messages
usually also connected to the display

O
© klsw System-Level Programming (ST 25) 22 Additions — In-/Output — Input/Output

22-Misc-IO_en

22-2

Misc-10 _en

22-N\

Standard |ﬂpUt/OUtpUt (continued)

Pipes

m The standard output of a program can be connected with the standard
input of another program:
~> progl | prog2

The redirection of the standard |/O channels is invisible for the called
program.

Automatic buffering

= Input from the keyboard is usually buffered line-by-line by the operating
system and only passed to the program when a NEWLINE symbol ("\n")

occurs!
= Output for the display is usually buffered line-by-line by the program and

only written to the display when a NEWLINE symbol occurs!

O © klsw System-Level Programming (ST 25) 22 Additions — In-/Output — Input/Output 22-3

22-Misc-IO_en

Opening and Closing Files

B Besides the standard |/O channels, a program can open further 1/0O

channels

= access to files
m Opening an |/O channel

= function fopen (file open)
m Closing an I/O channel

= function fclose (file close)

O © klsw System-Level Programming (ST 25) 22 Additions — In-/Output — Input/Output

22-4

22-Misc-IO_en

Opening and Closing Files (ontinuea

B Interface fopen
#include <stdio.h>

FILE xfopen(const char xname, const char *mode);

name: path name of the file to be opened
mode: mode, how the file has to be opened
"r": read
"w": write
"a”: write at the end of the file (append)
"rw”: read and write
= opens file name

m result of fopen: pointer to a data type FILE that describes a file
channel; on error NULL

O © klsw System-Level Programming (ST 25) 22 Additions — In-/Output — Input/Output

22-5

22-Misc-IO_en

Opening and Closing Files (ontinuea

B Interface fclose
#include <stdio.h>

int fclose(FILE xfp);

m closes |/O channel fp
m result is either 0 (no errors) or EOF if an error occured

O © klsw System-Level Programming (ST 25) 22 Additions — In-/Output — Input/Output

22-6

22-Misc-IO_en

Opening and Closing Files — Example

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
FILE *fp; int ret;
fp = fopen("test.dat", "w"); /* Open "test.dat" for writing. x/
if (fp == NULL) {
/* Error x/
perror("test.dat"); /* Print error message. */
exit (EXIT_FAILURE); /* Terminate program. */
}
. /* Program can now write to file "test.dat". =/
ret = fclose(fp); /* Close file. */
if (ret == EOF) {
/* Error x/
perror("test.dat"); /* Print error message. */
exit (EXIT_FAILURE); /* Terminate program. x/
}
return EXIT_SUCCESS;
}

© klsw System-Level Programming (ST 25) 22 Additions — In-/Output — Input/Output

22-7

22-Misc-IO_en

Reading and Writing single Characters

B Reading a single character

= from standard input = from a file
#include <stdio.h> #include <stdio.h>
int getchar(void); int fgetc(FILE xfp);

= read the next character
m return the character as int value
m return EOF at the end of file or when CRTL-D is pressed

m Writing a single character

= to the standard output = into a file

#include <stdio.h> #include <stdio.h>
int putchar(int c); int fputc(int c, FILE xfp);

m write the character ¢
= return EOF in case of an error

O © klsw System-Level Programming (ST 25) 22 Additions — In-/Output — Input/Output

22-8

22-Misc-I0_en

O

Reading and Writing single Characters — Example

Copy program:
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char xargv[]) {
FILE *src, *dst;

int c;
if (argc !'=3) { ... }
if ((src = fopen(argv[1l], "r")) == NULL) { ... }
if ((dst = fopen(argv[2], "w")) == NULL) { ... }
while ((c = fgetc(src)) != EOF) {
if (fputc(c, dst) == EOF) { ... }
}
if (fclose(dst) == EOF) { ... }
if (fclose(src) == EOF) { ... }

return EXIT_SUCCESS;

© klsw System-Level Programming (ST 25) 22 Additions — In-/Output — Input/Output 22-9

en

22-Misc-10

Reading and Writing Line-by-Line

B Reading one line

#include <stdio.h>
char xfgets(char xbuf, int bufsize, FILE xfp);

m reads characters from the file channel fp into the char array buf until
either bufsize-1 characters have been read or "\n’ or EOF

m s (returned string) gets terminated by "\@’ (’\n’ does not get
removed)

= returns NULL on EOF or when an error occurs

m for fp, stdin can be used to read from the standard input

m Writing one line

#include <stdio.h>
int fputs(char xbuf, FILE *xfp);

= writes the characters from the array s to the file channel fp
m returns EOF when an error occurs
m for fp stdout or stderr can be used

O © klsw System-Level Programming (ST 25) 22 Additions — In-/Output — Input/Output 22-10

22-Misc-I0_en

O

Formatted Output

Interface

#include <stdio.h>

int printf(char xformat, ...);

int fprintf(FILE xfp, char xformat, ...);

int sprintf(char xbuf, char *format, ...);

int snprintf(char *xbuf, int bufsize, char *format, ...);

The parameters given instead of ... are outputted according to the

specifications in the format string
= when using printf to the standard output channel
= when using fprintf to the file channel fp
(fp can be substituted by stdout or stderr)
m sprintf writes the output into the char-array buf
(but does not consider the length of the array = buffer overflow

possible!)

m snprintf works analogously, but writing at most bufsize characters
(bufsize therefore should not be greater than the size of the array!)

© klsw System-Level Programming (ST 25) 22 Additions — In-/Output — Input/Output

22-11

en

22-Misc-10

FOI’m atted O Utput (continued)

m Characters in the format string have different meanings

= normal (printable) characters:
are copied to the output

m escape characters:
e.d., \n or \'t are substituted by the corresponding characters in the
output (here: new line or tabulator)

m format instructions:
start with % character and describe, how the corresponding parameter in
the list after the format string has to be interpreted

B For more specific information refer to the manuals
(man 3 printf, ...)

O © klsw System-Level Programming (ST 25) 22 Additions — In-/Output — Input/Output 22-12

22-Misc-IO_en

Form atted O Utput (continued)

B Format-instructions
%d, %i: output int parameter as a decimal number
%Id, %li: correspondingly for long int

%f: output float parameter as floating point number
(e.g., 13.153534)
%If: correspondingly for double

%e: output float parameter as a floating point number with
powers of 10 (e.g., 2.71456e+02)
%le: correspondingly for double

%c: output char parameter as single character
%s: output char array until "\0"’ is reached

%%: output a % character

O © klsw System-Level Programming (ST 25) 22 Additions — In-/Output — Input/Output

22-13

Formatted Output — Example

int day = 25;

int month = 6;

int year = 2009;

char *name = "Michael Jackson";

printf("0n %d/%d/%d\n%s died.\n",
month, day, year, name);

printf("\n");

double pi = asin(1.0) * 2.0;
double e = exp(1.0);
fprintf(stdout,
"Important value are:\n");
fprintf(stdout,
"pi=%lf and e=%lf\n", pi, e);

~> ,/test
On 6/25/2009
Michael Jackson died.

Important value are:
pi=3.141593 and e=2.718282
~>

O © klsw System-Level Programming (ST 25) 22 Additions — In-/Output — Input/Output 22-14

22-Misc-I0_en

Formatted Input

O

Interface
#include <stdio.h>

int scanf(char *format, ...);

int fscanf(FILE xfp, char xformat, ...);
int sscanf(char xbuf, char xformat, ...);

Format string analogously works to the formatted output.
For more specific information, read the manuals (man 3 scanf, ...).

But: since values have to be read, pointers to the variables have to
be passed to the functions (mimic call-by-reference semantics with

C's call-by-value approach)!

22 Additions — In-/Output — Input/Output 22-15

© klsw System-Level Programming (ST 25)

Formatted Input — Example

double pi, e;
int ret;

ret = scanf("pi=%lf, e=%lf\n", &pi, &e);
if (ret !=2) {
fprintf(stderr, "Bad input!\n");
exit (EXIT_FAILURE);

}
printf("I got\n\tpi=%lf\n\te=%lf\n", pi, e);

~> . /test

3.14 2.718

Bad input!

~>

~> . /test

pi=3.14, e=2.718

I got
pi=3.140000
e=2.718000

~>

@

© klsw System-Level Programming (ST 25) 22 Additions — In-/Output — Input/Output

22-16

	22 Additions – In-/Output
	Input/Output

