21-Misc-Zeiger _en

O

System-Level Programming

21 Supplements: Pointers

Peter Wigemann

Lehrstuhl fiir Informatik 4
Systemsoftware

Friedrich-Alexander-Universitat
Erlangen-Niirnberg (FAU)

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

http://sys.cs.fau.de/lehre/ss25

21-Misc-Zeiger _en

m Strings are arrays of single characters (char) that are internally
terminated by the "\@’-character
B Example: Determining the length of a string — call strlen(x);

O

Pointers, Arrays, and Strings

/* 1. Version */
int strlen(const char x*s)

{
int n;
for (n = 0; xs != '\0"; n++) {
S++;
return n;
}

/* 2. Version */
int strlen(const char x*s)

{
const char *p = s;
while (*p != '\0") {
p++;
return p - s;
}

X

n=0 nz4 nxb

060000
[

© klsw System-Level Programming (ST 25)

21 Additions: Pointers — Pointers, Arrays, Strings

21-1

c-Zeiger _en

s

POIﬂteI’, Al’l’ayS aﬂd StrlngS (continued)

If a string is used for the initialization of a char-array, the identifier

of the array is a constant pointer to the start of the string
char amessage[] = "now is the time";

00.09.006.00@6@
) = amessae

®= a memory space of size 16 bytes is allocated and the characters are
copied to this area

m amessage is a constant pointer to the start of the memory area, this
pointer cannot be modified

m however, the contents of the memory area can be modified
amessage[0] = 'h’;

© klsw System-Level Programming (ST 25) 21 Additions: Pointers — Pointers, Arrays, Strings 21-2

POIﬂteI’, Al’l’ayS aﬂd StrlngS (continued)

m |If a string is used for the initialization of a char pointer, the poin-
ter is a variable that is initialized with the starting address of the string

const char *pmessage = "hello world"; /#(1)%/
(1) (2 .
pmessage++; /#(2)%/

printf("%s\n", pmessage); /* prints "ello world" x*/

m the string itself is placed in memory as a constant value (string literal)
by the compiler

= the memory space for a pointer is reserved (e.g., 4 byte) and then
initialized with the address of the string

c-Zeiger _en

o
o

O © klsw System-Level Programming (ST 25) 21 Additions: Pointers — Pointers, Arrays, Strings 21-3

isc-Zeiger _en

o
o

Pointer, Arrays and Strings (4)

const char *pmessage = "hello world"; /#(1)%/
(1) (2 .
pmessage++; /#(2)%/

printf("%s\n", pmessage); /* prints "ello world" x*/

m pmessage is a variable pointer that is initialized with a certain address,
but can be modified (pmessage++;)
m it is not allowed to modify the memory area of "hello world”
- the compiler detects this use of the keyword const and prevents write
access via the pointer
- some compilers place such strings in the write-protected area of the
memory (= memory-protection violation when the content is accessed and
the pointer has not been declared as a const pointer)

O © klsw System-Level Programming (ST 25) 21 Additions: Pointers — Pointers, Arrays, Strings 21-4

Pointer, Arrays and Strings (5)

B Assigning a char pointer or string to another char pointer does
copy the string!

pmessage = amessage;

The pointer pmessage only is assigned the address of the string

"now is the time”.
60.06.006000@90

<:> — amessage

pmessage

B When passing a string as an actual parameter to a function, the
function only receives a copy of the pointer to the string

21-Misc-Zeiger _en

O © klsw System-Level Programming (ST 25) 21 Additions: Pointers — Pointers, Arrays, Strings

21-5

21-Misc-Zeiger _en

Pointer, Arrays and Strings (6)

B To assign a whole string to another char array, the string has to be

copied: Function strcpy from the standard C library

B Examples for implementation:

/* 1. Version x/
void strcpy(char s[], char t[]) {
int 1 = 0;
while ((s[i] = t[i]) !'= '\0') {
i++;
}

}

/* 2. Version x/
void strcpy(char *s, char *t) {
while ((*s = xt) !'= '\0’) {
S++, t++;
}

}

/* 3. Version x/
void strcpy(char *s, char *t) {
while (*s++ = *t++) {

}

O © klsw System-Level Programming (ST 25) 21 Additions: Pointers — Pointers, Arrays, Strings

21-6

21-Misc-Zeiger _en

Pointer Arrays

Arrays of pointers can also be created

pfield

m Declaration
int xpfield[5];
e 4 = g
int j;

0 © klsw System-Level Programming (ST 25) 21 Additions: Pointers — Pointer Arrays

21-7

Pointer Arrays (contined

Arrays of pointers can be created also

m Declaration
int *pfield[5];
int i = 1;
int j;

B Access to a pointer of the
array
pfield[3] = &i;

21-Misc-Zeiger _en

pfield

_wopfield[3]

FANTZASVANZANZAN

0 © klsw System-Level Programming (ST 25)

21 Additions: Pointers — Pointer Arrays 21-8

21-Misc-Zeiger _en

Pointer Arrays (contined

Arrays of pointers can be created also

m Declaration

int xpfield[5]; pfield
int i = 1;
int j;
B Access to a pointer of the
array
pfield[3] = &i;
m Access to the object that the i,

pointer of the array points to
j = xpfield[3];

_pfield[3]

“kpfield[3]

O © klsw System-Level Programming (ST 25) 21 Additions: Pointers — Pointer Arrays

21-9

21-Misc-Zeiger _en

Pointer Arrays (contined

Example: Definition and initialization of a pointer array

const char *
month_name(int n)

{
static const char *name_of_month[] = {
"invalid month",
"January",
"December"
b
return (n < 1 || 12 < n) ? name_of_month[@] : name_of_month[n];
}

month_names

O © klsw System-Level Programming (ST 25) 21 Additions: Pointers — Pointer Arrays 21-10

Zeiger _en

o
o

Arguments from the Command Line

Usually, when a program is called, arguments are passed to the
program

The access to these arguments is provided in the function main()
by two parameters (both variants are equivalent):

int int

main(int argc, char xargv[]) main(int argc, char *x*argv)
{

} }

The parameter argc contains the number of arguments that were
given when calling the program

The parameter argv is a field of pointers to the respective
arguments (strings)

The name of the program is always passed as the first argument
(argv[0])

O © klsw System-Level Programming (ST 25) 21 Additions: Pointers — Command Line 21-11

21-Misc-Zeiger _en

Arguments from the Command Line

m Command:
gcc -Wall -o test test.c

m C-Hfile:
int main(int argc, char xargv[]) int main(int argc, char x*xargv)

argv[1](0]

0 © klsw System-Level Programming (ST 25) 21 Additions: Pointers — Command Line 21-12

21-Misc-Zeiger _en

Arguments — Example

Example: echo program

~> echo Hello SLP!
Hello SLP!

~>

argv[1]—

argv[2]
argv[3]

#include <stdio.h>

int
main(int argc, char *argv[])

for (int i = 1; i < argc; i++) {
printf("%ss ", argv[il);

}
printf("\n");

return 0;

O © klsw System-Level Programming (ST 25) 21 Additions: Pointers — Command Line 21-13

sc-Zeiger _en

o
o

Composite Data Types / Structures

m Combination of multiple values to one structure
m Declaration of structure
struct person {
char name[20];
int age;
iE:
B Definition of a variable of type struct
struct person pl;
m Access to an element of the structure

strcpy(pl.name, "Peter Pan");
pl.age = 12;

O © klsw System-Level Programming (ST 25) 21 Additions: Pointers — Structures

21-14

Pointers to Structures

m Concept in analogy to “pointer to variable”
m Address of a structure determined with the & (address-of) operator

m Example

struct person studl;
struct person xpstud;
pstud = &studl;

B Especially useful when building linked structures
(lists, trees, ...)
m a structure can contain addresses to further structures of the same (and
other) types

c-Zeiger _en

o
o

O © klsw System-Level Programming (ST 25) 21 Additions: Pointers — Structures 21-15

POIﬂterS tO StI’UCtUI’eS (continued)

B Access to components of the structure via the pointer
® Known approach

won

m “x"-operator yields structure itself

m “."-operator yields an element of the structure
» However: Keep in mind the order of the operators!

(*xpstud) .age = 21;
B Syntactically nicer:
m “->"-operator

pstud->age = 21;

sc-Zeiger _en

o
o

O © klsw System-Level Programming (ST 25) 21 Additions: Pointers — Structures 21-16

Misc-Zeiger _en

21-

Nested/Linked Structures

B Structures inside of structures are allowed — however:

m the structure’s size has to be statically determined by the compiler

= structure cannot contain itself
m the size of a pointer is always known
= structure can contain a pointer to the same structure

m Examples:

Linked list:

struct list {
struct list =*next;
struct person stud;

};

struct list x*head;

Tree:
struct tree {
struct tree xleft;
struct tree *right;
struct person stud;
T

struct tree *root;

O © klsw System-Level Programming (ST 25)

21 Additions: Pointers — Structures

21-17

21-Misc-Zeiger _en

Linked Lists

m Multiple structures of the same type can be linked via pointers
struct list { struct list *next; int val; };

O

struct list ell, el2, el3;
struct list xhead;

head = ℓ

ell.next = &el2; el2.next = &el3; el3.next = NULL;

ell.val = 10; el2.val = 20;

head: ell:
.next

val

Iterating over a linked list
int sum = 0;

el3.val = 30;
el2: el3:
.next .next
wval wval

for (struct list *xcurr = head; curr !'= NULL; curr = curr->next) {

sum += curr->val;

}

© klsw System-Level Programming (ST 25)

21 Additions: Pointers — Structures

21-18

	21 Additions: Pointers
	Pointers, Arrays, Strings
	Pointer Arrays
	Command Line
	Structures

