
System-Level Programming

21 Supplements: Pointers

Peter Wägemann

Lehrstuhl für Informatik 4
Systemsoftware

Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

21
-M

is
c-

Z
ei

ge
r_

en

http://sys.cs.fau.de/lehre/ss25

Pointers, Arrays, and Strings

Strings are arrays of single characters (char) that are internally
terminated by the ’\0’-character
Example: Determining the length of a string – call strlen(x);

/* 1. Version */
int strlen(const char *s)
{

int n;
for (n = 0; *s != ’\0’; n++) {

s++;
}
return n;

}

x

h e l l o \0

n=0 n=4 n=5

s
s++

/* 2. Version */
int strlen(const char *s)
{

const char *p = s;
while (*p != ’\0’) {

p++;
}
return p - s;

}

x

h e l l o \0

s p
p++

© klsw System-Level Programming (ST 25) 21 Additions: Pointers – Pointers, Arrays, Strings 21–1

21
-M

is
c-

Z
ei

ge
r_

en

Pointer, Arrays and Strings (continued)

If a string is used for the initialization of a char-array, the identifier
of the array is a constant pointer to the start of the string
char amessage[] = "now is the time";

n o w i s t h e t i m e \0

amessage

a memory space of size 16 bytes is allocated and the characters are
copied to this area
amessage is a constant pointer to the start of the memory area, this
pointer cannot be modified
however, the contents of the memory area can be modified
amessage[0] = ’h’;

© klsw System-Level Programming (ST 25) 21 Additions: Pointers – Pointers, Arrays, Strings 21–2

21
-M

is
c-

Z
ei

ge
r_

en

Pointer, Arrays and Strings (continued)

If a string is used for the initialization of a char pointer, the poin-
ter is a variable that is initialized with the starting address of the string
const char *pmessage = "hello world"; /*(1)*/

h e l l o w o r l d \0

(1) (2)

pmessage

pmessage++; /*(2)*/
printf("%s\n", pmessage); /* prints "ello world" */

the string itself is placed in memory as a constant value (string literal)
by the compiler
the memory space for a pointer is reserved (e. g., 4 byte) and then
initialized with the address of the string

© klsw System-Level Programming (ST 25) 21 Additions: Pointers – Pointers, Arrays, Strings 21–3

21
-M

is
c-

Z
ei

ge
r_

en

Pointer, Arrays and Strings (4)

const char *pmessage = "hello world"; /*(1)*/

h e l l o w o r l d \0

(1) (2)

pmessage

pmessage++; /*(2)*/
printf("%s\n", pmessage); /* prints "ello world" */

pmessage is a variable pointer that is initialized with a certain address,
but can be modified (pmessage++;)
it is not allowed to modify the memory area of ”hello world”

the compiler detects this use of the keyword const and prevents write
access via the pointer
some compilers place such strings in the write-protected area of the
memory (⇒ memory-protection violation when the content is accessed and
the pointer has not been declared as a const pointer)

© klsw System-Level Programming (ST 25) 21 Additions: Pointers – Pointers, Arrays, Strings 21–4

21
-M

is
c-

Z
ei

ge
r_

en

Pointer, Arrays and Strings (5)

Assigning a char pointer or string to another char pointer does
copy the string!
pmessage = amessage;

The pointer pmessage only is assigned the address of the string
”now is the time”.

n o w i s t h e t i m e \0

amessage

pmessage

When passing a string as an actual parameter to a function, the
function only receives a copy of the pointer to the string

© klsw System-Level Programming (ST 25) 21 Additions: Pointers – Pointers, Arrays, Strings 21–5

21
-M

is
c-

Z
ei

ge
r_

en

Pointer, Arrays and Strings (6)

To assign a whole string to another char array, the string has to be
copied: Function strcpy from the standard C library

Examples for implementation:
/* 1. Version */
void strcpy(char s[], char t[]) {

int i = 0;
while ((s[i] = t[i]) != ’\0’) {

i++;
}

}

/* 2. Version */
void strcpy(char *s, char *t) {

while ((*s = *t) != ’\0’) {
s++, t++;

}
}

/* 3. Version */
void strcpy(char *s, char *t) {

while (*s++ = *t++) {
}

}

© klsw System-Level Programming (ST 25) 21 Additions: Pointers – Pointers, Arrays, Strings 21–6

21
-M

is
c-

Z
ei

ge
r_

en

Pointer Arrays

Arrays of pointers can also be created

Declaration
int *pfield[5];
int i = 1;
int j;

© klsw System-Level Programming (ST 25) 21 Additions: Pointers – Pointer Arrays 21–7

21
-M

is
c-

Z
ei

ge
r_

en

Pointer Arrays (continued)

Arrays of pointers can be created also

Declaration
int *pfield[5];
int i = 1;
int j;

Access to a pointer of the
array
pfield[3] = &i;

© klsw System-Level Programming (ST 25) 21 Additions: Pointers – Pointer Arrays 21–8

21
-M

is
c-

Z
ei

ge
r_

en

Pointer Arrays (continued)

Arrays of pointers can be created also

Declaration
int *pfield[5];
int i = 1;
int j;

Access to a pointer of the
array
pfield[3] = &i;

Access to the object that the
pointer of the array points to
j = *pfield[3];

© klsw System-Level Programming (ST 25) 21 Additions: Pointers – Pointer Arrays 21–9

21
-M

is
c-

Z
ei

ge
r_

en

Pointer Arrays (continued)

Example: Definition and initialization of a pointer array
const char *
month_name(int n)
{

static const char *name_of_month[] = {
"invalid month",
"January",
...
"December"

};

return (n < 1 || 12 < n) ? name_of_month[0] : name_of_month[n];
}

© klsw System-Level Programming (ST 25) 21 Additions: Pointers – Pointer Arrays 21–10

21
-M

is
c-

Z
ei

ge
r_

en

Arguments from the Command Line

Usually, when a program is called, arguments are passed to the
program

The access to these arguments is provided in the function main()

by two parameters (both variants are equivalent):

int
main(int argc, char *argv[])
{

...
}

int
main(int argc, char **argv)
{

...
}

The parameter argc contains the number of arguments that were
given when calling the program

The parameter argv is a field of pointers to the respective
arguments (strings)

The name of the program is always passed as the first argument
(argv[0])

© klsw System-Level Programming (ST 25) 21 Additions: Pointers – Command Line 21–11

21
-M

is
c-

Z
ei

ge
r_

en

Arguments from the Command Line

Command:
gcc -Wall -o test test.c

C-file:
...
int main(int argc, char *argv[])
...

...
int main(int argc, char **argv)
...

© klsw System-Level Programming (ST 25) 21 Additions: Pointers – Command Line 21–12

21
-M

is
c-

Z
ei

ge
r_

en

Arguments – Example

Example: echo program

~> echo Hello SLP!
Hello SLP!
~>

#include <stdio.h>

int
main(int argc, char *argv[])
{

for (int i = 1; i < argc; i++) {
printf("%s ", argv[i]);

}
printf("\n");

return 0;
}

© klsw System-Level Programming (ST 25) 21 Additions: Pointers – Command Line 21–13

21
-M

is
c-

Z
ei

ge
r_

en

Composite Data Types / Structures

Combination of multiple values to one structure

Declaration of structure
struct person {

char name[20];
int age;

};

Definition of a variable of type struct
struct person p1;

Access to an element of the structure
strcpy(p1.name, "Peter Pan");
p1.age = 12;

© klsw System-Level Programming (ST 25) 21 Additions: Pointers – Structures 21–14

21
-M

is
c-

Z
ei

ge
r_

en

Pointers to Structures

Concept in analogy to “pointer to variable”
Address of a structure determined with the & (address-of) operator

Example
struct person stud1;
struct person *pstud;
pstud = &stud1;

Especially useful when building linked structures
(lists, trees, ...)

a structure can contain addresses to further structures of the same (and
other) types

© klsw System-Level Programming (ST 25) 21 Additions: Pointers – Structures 21–15

21
-M

is
c-

Z
ei

ge
r_

en

Pointers to Structures (continued)

Access to components of the structure via the pointer
Known approach

“*”-operator yields structure itself
“.”-operator yields an element of the structure
However: Keep in mind the order of the operators!

(*pstud).age = 21;

Syntactically nicer:
“->”-operator

pstud->age = 21;

© klsw System-Level Programming (ST 25) 21 Additions: Pointers – Structures 21–16

21
-M

is
c-

Z
ei

ge
r_

en

Nested/Linked Structures

Structures inside of structures are allowed – however:
the structure’s size has to be statically determined by the compiler
⇒ structure cannot contain itself
the size of a pointer is always known
⇒ structure can contain a pointer to the same structure
Examples:

Linked list:
struct list {

struct list *next;
struct person stud;

};

struct list *head;

Tree:
struct tree {

struct tree *left;
struct tree *right;
struct person stud;

};

struct tree *root;

© klsw System-Level Programming (ST 25) 21 Additions: Pointers – Structures 21–17

21
-M

is
c-

Z
ei

ge
r_

en

Linked Lists

Multiple structures of the same type can be linked via pointers
struct list { struct list *next; int val; };

struct list el1, el2, el3;
struct list *head;

head = &el1;
el1.next = &el2; el2.next = &el3; el3.next = NULL;
el1.val = 10; el2.val = 20; el3.val = 30;

Iterating over a linked list
int sum = 0;
for (struct list *curr = head; curr != NULL; curr = curr->next) {

sum += curr->val;
}

© klsw System-Level Programming (ST 25) 21 Additions: Pointers – Structures 21–18

21
-M

is
c-

Z
ei

ge
r_

en

	21 Additions: Pointers
	Pointers, Arrays, Strings
	Pointer Arrays
	Command Line
	Structures

