
System-Level Programming

31 Concurrent Threads

Peter Wägemann

Lehrstuhl für Informatik 4
Systemsoftware

Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

31
-T

hr
ea

ds
_

en

http://sys.cs.fau.de/lehre/ss25


Multi Processor Systems

In multiprocessor systems, physically parallel execution is possible

but

process creation, termination and, switching are expensive!

For practical applications, we therefore should take into account:

only few processes should be created/terminated

never create more processes than there are physical processors

or

instead of expensive processes use more lightweight, simple threads

© klsw System-Level Programming (ST 25) 31 Concurrent Threads – Activity Carriers (Threads) 31–1

31
-T

hr
ea

ds
_

en



Threads in a Process

Solution: multiple threads in one execution environment
Each thread has for its own execution

individual program counter
individual set of registers
individual stack (for local variables)

Shared execution environment provides a set of resources
memory mapping
permissions
open files
root and working directory
...

© klsw System-Level Programming (ST 25) 31 Concurrent Threads – Activity Carriers (Threads) 31–2

31
-T

hr
ea

ds
_

en



Threads in a Process (2)

The concept of a process is split up into one execution
environment and one or more threads
A classical UNIX process is a thread in an execution environment

© klsw System-Level Programming (ST 25) 31 Concurrent Threads – Activity Carriers (Threads) 31–3

31
-T

hr
ea

ds
_

en



Threads in a Process (3)

Creation/termination of a thread are less expensive compared to
creating/terminating a process (less individual resources required)
Switching between threads inside one process is also cheaper than
switching between processes

only the registers and the program counter have to be changed (similar
to a function call)
memory mapping does not have to be changed (cached content remains
valid!)

© klsw System-Level Programming (ST 25) 31 Concurrent Threads – Activity Carriers (Threads) 31–4

31
-T

hr
ea

ds
_

en



Coordination / Synchronization

Threads work concurrent/parallel and have shared memory
⇒ all problems occurring when dealing with signals and interrupts
and accessing shared data also exist
Differences between threads and ISRs/signal handling functions:

“main thread” of an application and an ISR/signal handling function are
unequal in their behavior

ISRs/signal handlers function interrupts the main thread but ISRs/signals
are not interrupted by themselves

two threads are equal
a thread can always be interrupted in favor of an other thread by the
scheduler or be run in parallel to another one

⇒ It is insufficient to block signals!

© klsw System-Level Programming (ST 25) 31 Concurrent Threads – Coordination / Synchronization
31–5

31
-T

hr
ea

ds
_

en



Coordination / Synchronization (2)

Basic problems
mutual exclusion (coordination)
Example:
A thread wants to read a set of data and prevent other threads from
changing the data in this time.
mutual waiting (synchronization)
Example:
A thread waits for an other thread so that they can combine partial
results that each thread has computed.

© klsw System-Level Programming (ST 25) 31 Concurrent Threads – Coordination / Synchronization
31–6

31
-T

hr
ea

ds
_

en



Coordination / Synchronization (3)

Example of complex problem with coordination and synchronization
Bounded buffer
Threads write data into a buffer, others remove data from it; critical
situations:

access to the buffer
buffer empty/full

Inserting an element:
wait until there is free space

wait until no other thread
reads/writes from/to the
buffer

write into the buffer

send signal that there is a
new element in the buffer

Removing an element:
wait until an element is in the
buffer

wait until no other thread
reads/writes

read from the buffer

send signal that there is free
space in the buffer

© klsw System-Level Programming (ST 25) 31 Concurrent Threads – Coordination / Synchronization
31–7

31
-T

hr
ea

ds
_

en



Mutual Exclusion

Simple implementation with mutex variables
volatile int m = 0; /* 0: free; 1: locked */
volatile int counter = 0;

... /* Thread 1 */
lock(&m);
counter++;
unlock(&m);
...

... /* Thread 2 */
lock(&m);
printf("%d\n", counter);
counter = 0;
unlock(&m);
...

Only the thread that called lock is allowed to call unlock!
Realization (only conceptual!)

void lock(volatile int *m) {
while (*m == 1) {

/* Wait... */
}
*m = 1;

}

void unlock(volatile int *m) {
*m = 0;

}

lock (and unlock) have to be executed atomically!
© klsw System-Level Programming (ST 25) 31 Concurrent Threads – Coordination / Synchronization
31–8

31
-T

hr
ea

ds
_

en



Counting Semaphores

A semaphore (greek. character carrier) is a data structure with two
instructions (refer Dijkstra):

P-operation (proberen; passeren; wait; down)
void P(volatile int *s) {

while (*s <= 0) {
/* Wait/sleep... */

}
*s -= 1;

}

V-operation (verhogen; vrijgeven; signal; up)
void V(volatile int *s) {

*s += 1;
/* Wakeup... */

}

P and V have to be executed atomically!
P and V do not have to be called from the same thread.

© klsw System-Level Programming (ST 25) 31 Concurrent Threads – Coordination / Synchronization
31–9

31
-T

hr
ea

ds
_

en



Bounded Buffer (2)

Bounded integer buffer example:

#define N 1000
volatile int mutex = 0;
volatile int alloc = 0, free = N;
volatile int head = 0, tail = 0;
volatile int buf[N];

Inserting element:
void put(int x) {

P(&free);
lock(&mutex);
buf[head] = x;
head = (head + 1) % N;
unlock(&mutex);
V(&alloc);

}

Removing element:
int get(void) {

int x;
P(&alloc);
lock(&mutex);
x = buf[tail];
tail = (tail + 1) % N;
unlock(&mutex);
V(&free);
return x;

}

© klsw System-Level Programming (ST 25) 31 Concurrent Threads – Coordination / Synchronization
31–10

31
-T

hr
ea

ds
_

en



Spin Lock vs. Sleeping Lock

Spin lock
active waiting until mutex variable is free (= 0)
conceptually similar to polling
thread stays in the state running

Problem: when there is only one processor available, computation
time is wasted until the scheduler schedules a switch

only another running thread can free the mutex variable

Sleeping Lock
passive waiting
thread changes state to blocked
when unlock occurs, the blocked thread changes to the state ready

Problem: for really short critical sections the expenses for
blocking/waking up and switching are disproportionately expensive

© klsw System-Level Programming (ST 25) 31 Concurrent Threads – Coordination / Synchronization
31–11

31
-T

hr
ea

ds
_

en



Implementation Spin Lock

Main problem: atomicity of mutex request and setting
void lock(volatile int *m) {

while (*m == 1) {
/* Wait... */

}
*m = 1;

}

critical section

Solution: special machine instructions that enable to atomically
request and modify a cell in the main memory

test-and-set, compare-and-swap, load-link/store-conditional, ...

© klsw System-Level Programming (ST 25) 31 Concurrent Threads – Coordination / Synchronization
31–12

31
-T

hr
ea

ds
_

en



Implementation Sleeping Lock

Two problems:
1. Conflict with a second lock operation:

Atomicity of mutex request and setting
void lock(volatile int *m) {

while (*m == 1) {
sleep();

}
*m = 1;

}

critical section 1

2. Conflict with second unlock: lost-wakeup problem
void lock(volatile int *m) {

while (*m == 1) {
sleep();

}
*m = 1;

}

critical section 2

Scenarios:
1. switching of processes during a lock operation
2. actually parallel running lock- and/or unlock operations

© klsw System-Level Programming (ST 25) 31 Concurrent Threads – Coordination / Synchronization
31–13

31
-T

hr
ea

ds
_

en



Implementation Sleeping Lock (2)

Solution scenario (1):
prevent process switches

process switches are functions of the OS kernel
takes place in the context of system calls (e. g., exit)
or in the context of an interrupt handler (e. g., time-slice expiration
interrupt)

⇒ lock/unlock are implemented in the OS kernel; OS kernel has
preemption avoidance

void lock(volatile int *m)
{

enter_OS();
cli();
while (*m == 1) {

block_thread_and_schedule();
}
*m = 1;
sei();
leave_OS();

}

void unlock(volatile int *m)
{

enter_OS();
cli();
*m = 0;
wakeup_waiting_threads();
sei();
leave_OS();

}

© klsw System-Level Programming (ST 25) 31 Concurrent Threads – Coordination / Synchronization
31–14

31
-T

hr
ea

ds
_

en



Implementation Sleeping Lock (3)

Solution scenario (2):
Prevent parallel execution on another processor

void lock(volatile int *m)
{

enter_OS();
cli();
spin_lock();
while (*m == 1) {

block_thread_and_schedule();
}
*m = 1;
spin_unlock();
sei();
leave_OS();

}

void unlock(volatile int *m)
{

enter_OS();
cli();
spin_lock();
*m = 0;
wakeup_waiting_threads();
spin_unlock();
sei();
leave_OS();

}

P() and V() similar

© klsw System-Level Programming (ST 25) 31 Concurrent Threads – Coordination / Synchronization
31–15

31
-T

hr
ea

ds
_

en


	31 Concurrent Threads 
	Activity Carriers (Threads) 
	Coordination / Synchronization 


