31-Threads _en

O

System-Level Programming

31 Concurrent Threads

Peter Wigemann

Lehrstuhl fiir Informatik 4
Systemsoftware

Friedrich-Alexander-Universitat
Erlangen-Niirnberg (FAU)

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

http://sys.cs.fau.de/lehre/ss25

Multi Processor Systems

In multiprocessor systems, physically parallel execution is possible
but
process creation, termination and, switching are expensive!

For practical applications, we therefore should take into account:
m only few processes should be created/terminated
B never create more processes than there are physical processors

or

instead of expensive processes use more lightweight, simple threads

O © klsw System-Level Programming (ST 25) 31 Concurrent Threads - Activity Carriers (Threads) — 31-1

Threads in a Process

Solution: multiple threads in one execution environment
B Each thread has for its own execution
» individual program counter
= individual set of registers
m individual stack (for local variables)
B Shared execution environment provides a set of resources
= memory mapping
m permissions
m open files
= root and working directory
| |

O © klsw System-Level Programming (ST 25) 31 Concurrent Threads — Activity Carriers (Threads) — 31-2

en

31-Threads

Threads in a Process (2)

m The concept of a process is split up into one execution
environment and one or more threads

B A classical UNIX process is a thread in an execution environment

O © Klsw System-Level Programming (ST 25) 31 Concurrent Threads - Activity Carriers (Threads)

31-3

Threads in a Process (3)

m Creation/termination of a thread are less expensive compared to
creating/terminating a process (less individual resources required)
B Switching between threads inside one process is also cheaper than
switching between processes
= only the registers and the program counter have to be changed (similar

to a function call)
= memory mapping does not have to be changed (cached content remains

valid!)

31-Threads_en

O © klsw System-Level Programming (ST 25) 31 Concurrent Threads — Activity Carriers (Threads) 31-4

31-Threads_en

Coordination / Synchronization

Threads work concurrent/parallel and have shared memory
= all problems occurring when dealing with signals and interrupts
and accessing shared data also exist
Differences between threads and ISRs/signal handling functions:
= “main thread” of an application and an ISR/signal handling function are
unequal in their behavior
- ISRs/signal handlers function interrupts the main thread but ISRs/signals
are not interrupted by themselves
m two threads are equal
- a thread can always be interrupted in favor of an other thread by the
scheduler or be run in parallel to another one

= It is insufficient to block signals!

O %c‘)‘klgw System-Level Programming (ST 25) 3T Concurrent Threads — Coordination / Synchronization
-5

1

31-Threads_en

Coordination / Synchronization (2)

m Basic problems
= mutual exclusion (coordination)

Example:
A thread wants to read a set of data and prevent other threads from

changing the data in this time.
= mutual waiting (synchronization)

Example:
A thread waits for an other thread so that they can combine partial

results that each thread has computed.

O %c‘)klgw System-Level Programming (ST 25) 3T Concurrent Threads — Coordination / Synchronization
1-6

31-Threads_en

Coordination / Synchronization (3)

B Example of complex problem with coordination and synchronization
= Bounded buffer
m Threads write data into a buffer, others remove data from it; critical
situations:
- access to the buffer
- buffer empty/full

Inserting an element: Removing an element:

B wait until there is free space ® wait until an element is in the

m wait until no other thread buffer

reads/writes from/to the ® wait until no other thread
buffer reads/writes

B write into the buffer m read from the buffer

B send signal that there is a m send signal that there is free
new element in the buffer space in the buffer

O %c‘)‘klgw System-Level Programming (ST 25) 3T Concurrent Threads — Coordination / Synchronization
1-7

Mutual Exclusion

m Simple implementation with mutex variables

volatile int m = 0; /* 0: free; 1: locked */
volatile int counter = 0;

/* Thread 1 x/ /* Thread 2 %/

Lock (&m) ; lock (&m) ;
counter++; printf("%d\n", counter);

unlock(&m) ; counter = 0;
.. unlock(&m) ;

Only the thread that called lock is allowed to call unlock!
B Realization (only conceptual!)
void lock(volatile int *xm) {
while (xm == 1) {

i /x Wait... *x/ }
¢ }

void unlock(volatile int *m) {
*m = 0;

lock (and unlock) have to be executed atomically!

O %CJKEW System-Level Programming (ST 25) 3T Concurrent Threads — Coordination / Synchronization
1-8

O

Counting Semaphores

A semaphore (greek. character carrier) is a data structure with two
instructions (refer Dijkstra):
m P-operation (proberen; passeren; wait; down)

void P(volatile int *s) {
while (xs <= 0) {
/* Wait/sleep... */
)

*s -= 1;

}

m V-operation (verhogen, vrijgeven, signal; up)

void V(volatile int *s) {
*S += 1;
/* Wakeup... *x/

}

P and V have to be executed atomically!
P and V do not have to be called from the same thread.

%c‘)‘klgw System-Level Programming (ST 25) 3T Concurrent Threads — Coordination / Synchronization
1-9

Bounded Buffer (2)

Bounded integer buffer example:

#define N 1000

volatile int mutex = 0;

volatile int alloc 0, free = N;
volatile int head = 0, tail = 0;
volatile int buf[N];

Inserting element: Removing element:
void put(int x) { int get(void) {
int x;
P(&free); P(&alloc);
lock(&mutex) ; lock(&mutex) ;
buf[head] = x; x = buf[tail];
head = (head + 1) % N; tail = (tail + 1) % N;
unlock (&mutex) ; unlock (&mutex) ;
V(&alloc); V(&free);
return x;
° } }

-
®
O \%klgw System-Level Programming (ST 25) 3T Concurrent Threads — Coordination / Synchronization
31-10

31-Threads_en

Spin Lock vs. Sleeping Lock

Spin lock

m active waiting until mutex variable is free (= 0)
m conceptually similar to polling

m thread stays in the state running

Problem: when there is only one processor available, computation
time is wasted until the scheduler schedules a switch

= only another running thread can free the mutex variable

Sleeping Lock

m passive waiting

m thread changes state to blocked

= when unlock occurs, the blocked thread changes to the state ready

Problem: for really short critical sections the expenses for
blocking/waking up and switching are disproportionately expensive

O \%klgw System-Level Programming (ST 25) 3T Concurrent Threads — Coordination / Synchronization
31-11

31-Threads_en

Implementation Spin Lock

B Main problem: atomicity of mutex request and setting

void lock(volatile int *m) {
while (xm == 1) {
/* Wait... *x/
}

*m = 1;

critical section

}

B Solution: special machine instructions that enable to atomically
request and modify a cell in the main memory
m test-and-set, compare-and-swap, load-link/store-conditional, ...

O (%)kl?w System-Level Programming (ST 25) 3T Concurrent Threads — Coordination / Synchronization
31-12

31-Threads_en

O

Implementation Sleeping Lock

Two problems:

1. Conflict with a second lock operation:
Atomicity of mutex request and setting
void lock(volatile int *m) {

while (xm == 1) {
} slasplls critical section 1

*m = 1;

}

2. Conflict with second unlock: lost-wakeup problem
void lock(volatile int *m) {

[Whllglézg(TT) critical section 2

*m = 1;

}

Scenarios:
1. switching of processes during a lock operation
2. actually parallel running lock- and/or unlock operations

(%)kl?w System-Level Programming (ST 25) 31 Concurrent Threads — Coordination
31-13

Synchronization

Implementation Sleeping Lock (2)

m Solution scenario (1):

prevent process switches

m process switches are functions of the OS kernel
- takes place in the context of system calls (e. g., exit)
- or in the context of an interrupt handler (e.g., time-slice expiration

interrupt)

= lock/unlock are implemented in the OS kernel; OS kernel has
preemption avoidance

¥oid lock(volatile int xm) void unlock(volatile int xm)
enter_0S(); ¢ enter_0S();
cli(); cli();
while (xm == 1) { *m = 0;
block_thread_and_schedule(); wakeup_waiting_threads();
} sei();
5 *m = 1; leave_0S();
sei(); }
E leave_0S();
5 }

O \%klgw System-Level Programming (ST 25) 3T Concurrent Threads — Coordination / Synchronization
31-14

Implementation Sleeping Lock (3)

m Solution scenario (2):
Prevent parallel execution on another processor

void lock(volatile int *m)

void unlock(volatile int =m)

{
enter_0S(); enter_0S();
cli(); cli();
spin_lock(); spin_lock()
while (xm == 1) { *m = 0;

block_thread_and_schedule(); wakeup_waiting_threads();

} spin_unlock();
m = I8 sei();
spin_unlock(); leave_0S();
sei();
leave_0S();

}

- ® P()and V() similar
O O KIsw System-Level Programming (ST 25) 3T Concurrent Threads — Coordination / Synchronization
31-15

	31 Concurrent Threads
	Activity Carriers (Threads)
	Coordination / Synchronization

