Resilient Cloud-based Replication with Low Latency

December 9, 2020

Michael Eischer and Tobias Distler

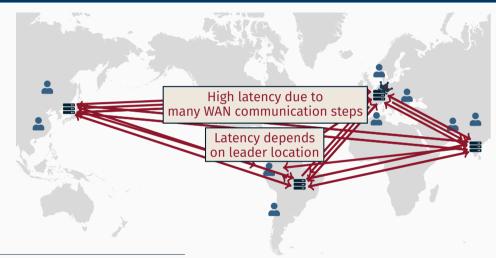
Friedrich-Alexander University Erlangen-Nürnberg (FAU)

¹Miguel Castro and Barbara Liskov. "Practical Byzantine Fault Tolerance." In: Proceedings of the 3rd Symposium on Operating Systems Design and Implementation (OSDI'99). 1999, pp. 173–186.

¹Miguel Castro and Barbara Liskov. "Practical Byzantine Fault Tolerance." In: *Proceedings of the 3rd Symposium on Operating Systems Design and Implementation (OSDI'99)*. 1999, pp. 173–186.

¹Miguel Castro and Barbara Liskov. "Practical Byzantine Fault Tolerance." In: Proceedings of the 3rd Symposium on Operating Systems Design and Implementation (OSDI'99), 1999, pp. 173-186.

¹Miguel Castro and Barbara Liskov. "Practical Byzantine Fault Tolerance." In: Proceedings of the 3rd Symposium on Operating Systems Design and Implementation (OSDI'99), 1999, pp. 173-186.

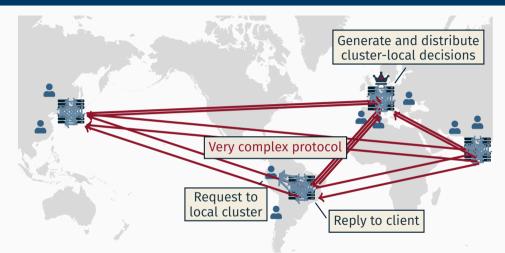

¹Miguel Castro and Barbara Liskov. "Practical Byzantine Fault Tolerance." In: Proceedings of the 3rd Symposium on Operating Systems Design and Implementation (OSDI'99), 1999, pp. 173-186.

¹Miguel Castro and Barbara Liskov. "Practical Byzantine Fault Tolerance." In: Proceedings of the 3rd Symposium on Operating Systems Design and Implementation (OSDI'99), 1999, pp. 173-186.

¹Miguel Castro and Barbara Liskov. "Practical Byzantine Fault Tolerance." In: *Proceedings of the 3rd Symposium on Operating Systems Design and Implementation (OSDI'99).* 1999, pp. 173–186.

²Yair Amir et al. "Steward: Scaling Byzantine Fault-Tolerant Replication to Wide Area Networks." In: *IEEE Transactions on Dependable and Secure Computing* 7.1 (2010), pp. 80–93.

²Yair Amir et al. "Steward: Scaling Byzantine Fault-Tolerant Replication to Wide Area Networks." In: *IEEE Transactions on Dependable and Secure Computing* 7.1 (2010), pp. 80–93.


²Yair Amir et al. "Steward: Scaling Byzantine Fault-Tolerant Replication to Wide Area Networks." In: IEEE Transactions on Dependable and Secure Computing 7.1 (2010), pp. 80-93.

²Yair Amir et al. "Steward: Scaling Byzantine Fault-Tolerant Replication to Wide Area Networks." In: IEEE Transactions on Dependable and Secure Computing 7.1 (2010), pp. 80-93.

²Yair Amir et al. "Steward: Scaling Byzantine Fault-Tolerant Replication to Wide Area Networks." In: *IEEE Transactions on Dependable and Secure Computing* 7.1 (2010), pp. 80–93.

²Yair Amir et al. "Steward: Scaling Byzantine Fault-Tolerant Replication to Wide Area Networks." In: *IEEE Transactions on Dependable and Secure Computing* 7.1 (2010), pp. 80–93.

²Yair Amir et al. "Steward: Scaling Byzantine Fault-Tolerant Replication to Wide Area Networks." In: *IEEE Transactions on Dependable and Secure Computing* 7.1 (2010), pp. 80–93.

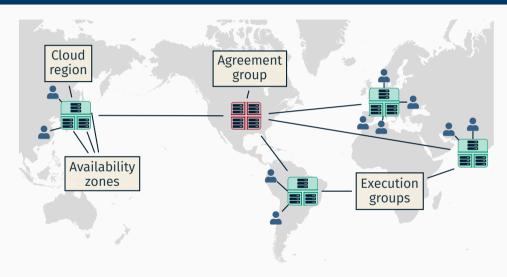
Challenges

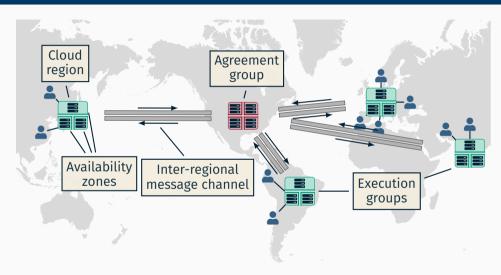
Challenges

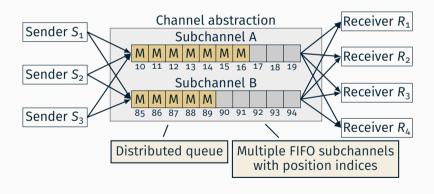
Need for a replication protocol that provides

- **Efficiency:** No complex protocols over wide-area links
- Modularity: Allow integrating with different consensus protocols
- Adaptability: Add and remove new locations

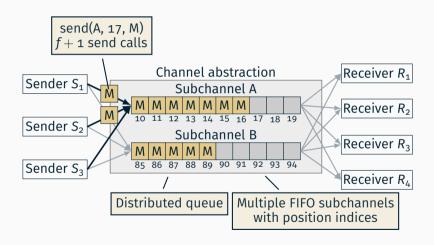
Our Approach: SPIDER

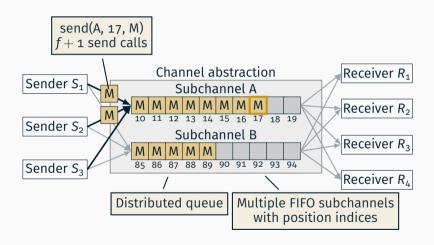

SPIDER: Architecture

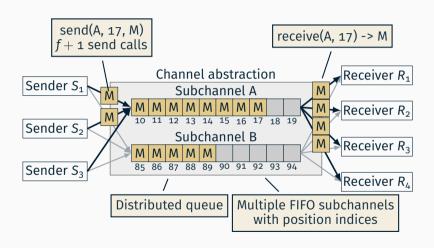

SPIDER: Architecture

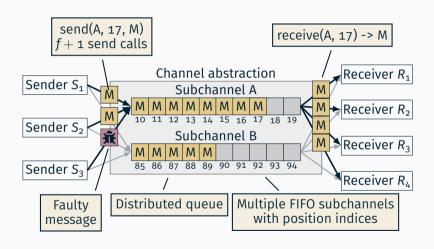


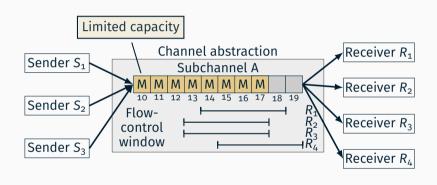
SPIDER: Architecture

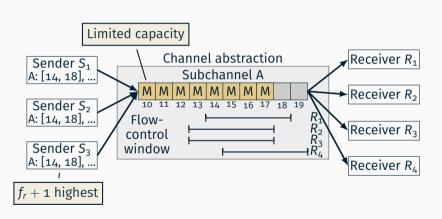






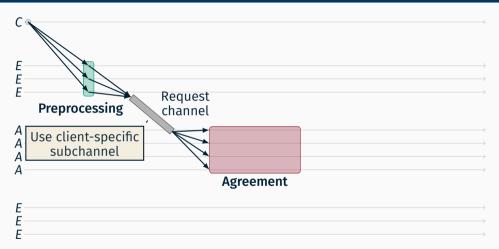




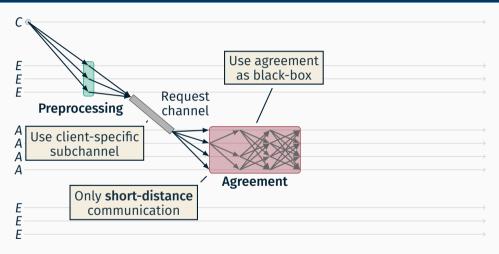

Inter-Regional Message Channel (IRMC) - Flow Control

Inter-Regional Message Channel (IRMC) - Flow Control

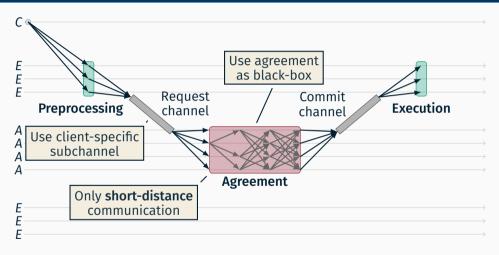
C			\rightarrow
E			\longrightarrow
E			$\stackrel{\longrightarrow}{\longrightarrow}$
4			
A — — — — — — — — — — — — — — — — — — —			\longrightarrow
A			$\stackrel{\longrightarrow}{\longrightarrow}$
F			\longrightarrow
Ē — — — —			\longrightarrow

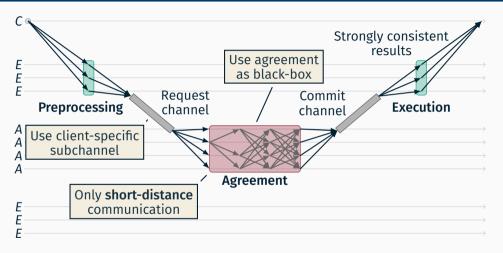


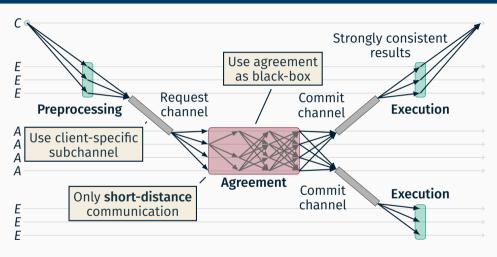
(
E	
E	
L	Preprocessing
A-	
A – A –	
\tilde{A}	
E-	
E -	
F-	

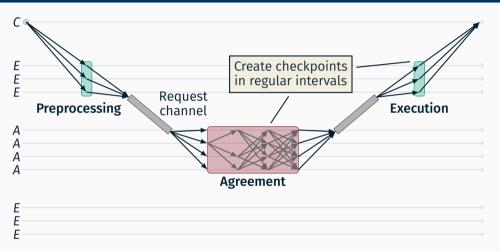


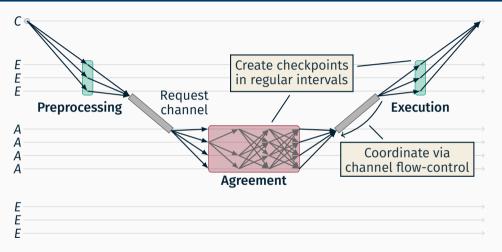
C	Weakly consistent results
E —	results
£ —	Preprocessing
A — A — A —	→ → →
<i>A</i> –	→
E — E — E —	→ → → → → → → → → → → → → → → → → → →

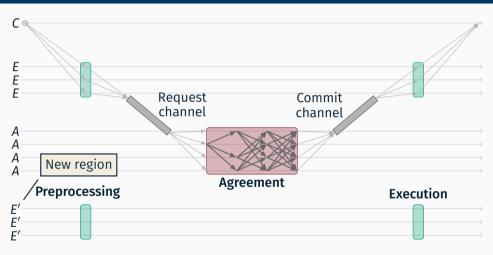




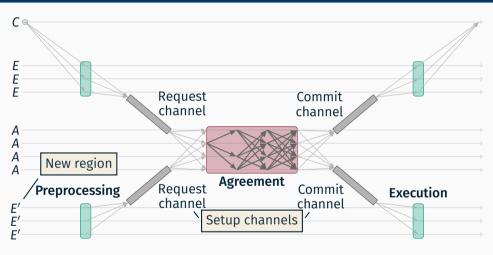


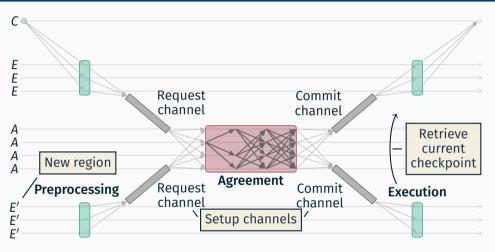


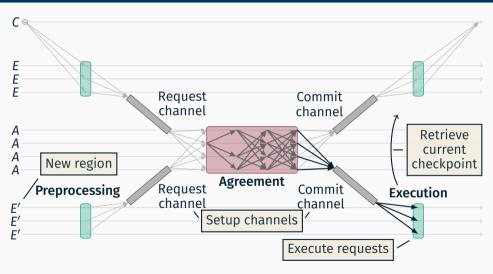

SPIDER - Garbage Collection

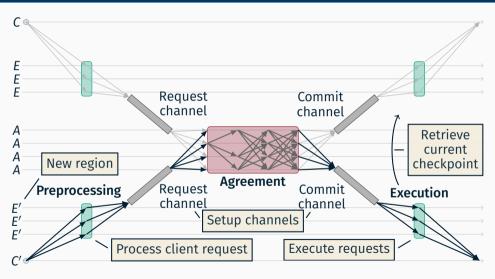


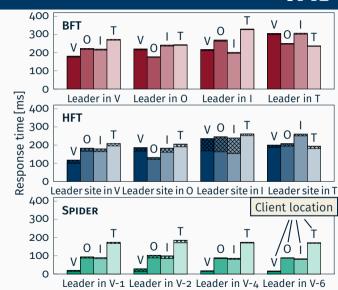
SPIDER - Garbage Collection



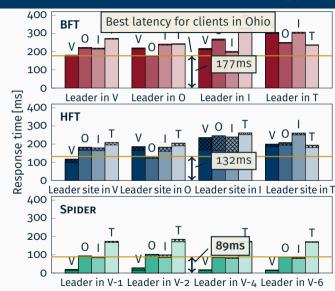




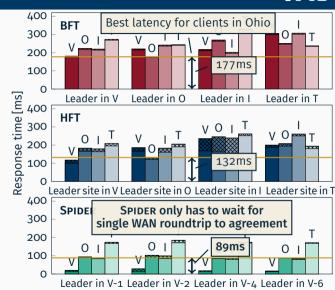




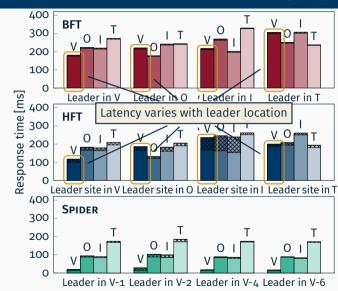
Evaluation



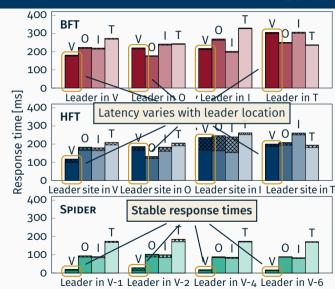
- Replicas in 4 AWS EC2 regions:Virginia, Oregon, Ireland, Tokyo
- 50 clients per region
- **BFT**: PBFT with 1 replica per region
- HFT: Steward with 4 replicas as cluster in each region
- SPIDER: 4 agreement replicas in Virginia, 3 replicas per execution group per region



- Replicas in 4 AWS EC2 regions:
 Virginia, Oregon, Ireland, Tokyo
- 50 clients per region
- **BFT**: PBFT with 1 replica per region
- HFT: Steward with 4 replicas as cluster in each region
- SPIDER: 4 agreement replicas in Virginia, 3 replicas per execution group per region



- Replicas in 4 AWS EC2 regions:
 Virginia, Oregon, Ireland, Tokyo
- 50 clients per region
- **BFT**: PBFT with 1 replica per region
- HFT: Steward with 4 replicas as cluster in each region
- SPIDER: 4 agreement replicas in Virginia, 3 replicas per execution group per region



- Replicas in 4 AWS EC2 regions:
 Virginia, Oregon, Ireland, Tokyo
- 50 clients per region
- **BFT**: PBFT with 1 replica per region
- HFT: Steward with 4 replicas as cluster in each region
- SPIDER: 4 agreement replicas in Virginia, 3 replicas per execution group per region

- Replicas in 4 AWS EC2 regions:
 Virginia, Oregon, Ireland, Tokyo
- 50 clients per region
- **BFT**: PBFT with 1 replica per region
- HFT: Steward with 4 replicas as cluster in each region
- SPIDER: 4 agreement replicas in Virginia, 3 replicas per execution group per region

Summary

Summary

Problem

- Performance depends on leader location
- Either high latency or high complexity
- Best replica locations depend on client locations

SPIDER

- Efficient: IRMCs forward group decisions
- Modular: Decoupled agreement and execution groups
- Adaptable: Add or remove execution groups at runtime

More details in the paper

- Different possible Inter-Regional Message Channel (IRMC) implementations
- Handling malicious clients and other attacks